ﻻ يوجد ملخص باللغة العربية
The random Lorentz gas (RLG) is a minimal model of transport in heterogeneous media. It also models the dynamics of a tracer in a glassy system. These two perspectives, however, are fundamentally inconsistent. Arrest in the former is related to percolation, and hence continuous, while glass-like arrest is discontinuous. In order to clarify the interplay between percolation and glassiness in the RLG, we consider its exact solution in the infinite-dimensional $drightarrowinfty$ limit, as well as numerics in $d=2ldots 20$. We find that the mean field solutions of the RLG and glasses fall in the same universality class, and that instantonic corrections related to rare cage escapes destroy the glass transition in finite dimensions. This advance suggests that the RLG can be used as a toy model to develop a first-principle description of hopping in structural glasses.
We find an interesting interplay between the range of the attractive part of the interaction potential and the extent of metastability (as measured by supersaturation) in gas-liquid nucleation. We explore and exploit this interplay to obtain new insi
Frustration of classical many-body systems can be used to distinguish ferromagnetic interactions from anti-ferromagnetic ones via the Toulouse conditions. A quantum version of the Toulouse conditions provides a similar classification based on the loc
We consider a generalization of the FKPP equation for the evolution of the spatial density of a single-species population where all the terms are nonlocal. That is, the spatial extension of each process (growth, competition and diffusion) is ruled by
We present here for the first time a unifying perspective for the lack of equipartition in non-linear ordered systems and the low temperature phase-space fragmentation in disordered systems. We demonstrate that they are just two manifestation of the
We determine the nonlinear time-dependent response of a tracer on a lattice with randomly distributed hard obstacles as a force is switched on. The calculation is exact to first order in the obstacle density and holds for arbitrarily large forces. Wh