ترغب بنشر مسار تعليمي؟ اضغط هنا

Fiber: A Platform for Efficient Development and Distributed Training for Reinforcement Learning and Population-Based Methods

105   0   0.0 ( 0 )
 نشر من قبل Jiale Zhi
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent advances in machine learning are consistently enabled by increasing amounts of computation. Reinforcement learning (RL) and population-based methods in particular pose unique challenges for efficiency and flexibility to the underlying distributed computing frameworks. These challenges include frequent interaction with simulations, the need for dynamic scaling, and the need for a user interface with low adoption cost and consistency across different backends. In this paper we address these challenges while still retaining development efficiency and flexibility for both research and practical applications by introducing Fiber, a scalable distributed computing framework for RL and population-based methods. Fiber aims to significantly expand the accessibility of large-scale parallel computation to users of otherwise complicated RL and population-based approaches without the need to for specialized computational expertise.



قيم البحث

اقرأ أيضاً

Modern machine learning algorithms are increasingly computationally demanding, requiring specialized hardware and distributed computation to achieve high performance in a reasonable time frame. Many hyperparameter search algorithms have been proposed for improving the efficiency of model selection, however their adaptation to the distributed compute environment is often ad-hoc. We propose Tune, a unified framework for model selection and training that provides a narrow-waist interface between training scripts and search algorithms. We show that this interface meets the requirements for a broad range of hyperparameter search algorithms, allows straightforward scaling of search to large clusters, and simplifies algorithm implementation. We demonstrate the implementation of several state-of-the-art hyperparameter search algorithms in Tune. Tune is available at http://ray.readthedocs.io/en/latest/tune.html.
Over the past few years, the use of swarms of Unmanned Aerial Vehicles (UAVs) in monitoring and remote area surveillance applications has become widespread thanks to the price reduction and the increased capabilities of drones. The drones in the swar m need to cooperatively explore an unknown area, in order to identify and monitor interesting targets, while minimizing their movements. In this work, we propose a distributed Reinforcement Learning (RL) approach that scales to larger swarms without modifications. The proposed framework relies on the possibility for the UAVs to exchange some information through a communication channel, in order to achieve context-awareness and implicitly coordinate the swarms actions. Our experiments show that the proposed method can yield effective strategies, which are robust to communication channel impairments, and that can easily deal with non-uniform distributions of targets and obstacles. Moreover, when agents are trained in a specific scenario, they can adapt to a new one with minimal additional training. We also show that our approach achieves better performance compared to a computationally intensive look-ahead heuristic.
TorchBeast is a platform for reinforcement learning (RL) research in PyTorch. It implements a version of the popular IMPALA algorithm for fast, asynchronous, parallel training of RL agents. Additionally, TorchBeast has simplicity as an explicit desig n goal: We provide both a pure-Python implementation (MonoBeast) as well as a multi-machine high-performance version (PolyBeast). In the latter, parts of the implementation are written in C++, but all parts pertaining to machine learning are kept in simple Python using PyTorch, with the environments provided using the OpenAI Gym interface. This enables researchers to conduct scalable RL research using TorchBeast without any programming knowledge beyond Python and PyTorch. In this paper, we describe the TorchBeast design principles and implementation and demonstrate that it performs on-par with IMPALA on Atari. TorchBeast is released as an open-source package under the Apache 2.0 license and is available at url{https://github.com/facebookresearch/torchbeast}.
Significant progress has been made in the area of model-based reinforcement learning. State-of-the-art algorithms are now able to match the asymptotic performance of model-free methods while being significantly more data efficient. However, this succ ess has come at a price: state-of-the-art model-based methods require significant computation interleaved with data collection, resulting in run times that take days, even if the amount of agent interaction might be just hours or even minutes. When considering the goal of learning in real-time on real robots, this means these state-of-the-art model-based algorithms still remain impractical. In this work, we propose an asynchronous framework for model-based reinforcement learning methods that brings down the run time of these algorithms to be just the data collection time. We evaluate our asynchronous framework on a range of standard MuJoCo benchmarks. We also evaluate our asynchronous framework on three real-world robotic manipulation tasks. We show how asynchronous learning not only speeds up learning w.r.t wall-clock time through parallelization, but also further reduces the sample complexity of model-based approaches by means of improving the exploration and by means of effectively avoiding the policy overfitting to the deficiencies of learned dynamics models.
In real-world applications of reinforcement learning (RL), noise from inherent stochasticity of environments is inevitable. However, current policy evaluation algorithms, which plays a key role in many RL algorithms, are either prone to noise or inef ficient. To solve this issue, we introduce a novel policy evaluation algorithm, which we call Gap-increasing RetrAce Policy Evaluation (GRAPE). It leverages two recent ideas: (1) gap-increasing value update operators in advantage learning for noise-tolerance and (2) off-policy eligibility trace in Retrace algorithm for efficient learning. We provide detailed theoretical analysis of the new algorithm that shows its efficiency and noise-tolerance inherited from Retrace and advantage learning. Furthermore, our analysis shows that GRAPEs learning is significantly efficient than that of a simple learning-rate-based approach while keeping the same level of noise-tolerance. We applied GRAPE to control problems and obtained experimental results supporting our theoretical analysis.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا