ﻻ يوجد ملخص باللغة العربية
We observed Ceres at three epochs in 2015 November and 2017 September and October with ALMA 12-meter array and in 2017 October with the ALMA Compact Array (ACA), all at ~265 GHz continuum (wavelengths of ~1.1 mm) to map the temperatures of Ceres over a full rotation at each epoch. We also used 2017 October ACA observations to search for HCN. The disk-averaged brightness temperature of Ceres is measured to be between 170 K and 180 K during our 2017 observations. The rotational lightcurve of Ceres shows a double peaked shape with an amplitude of about 4%. Our HCN search returns a negative result with an upper limit production rate of ~2$times$10$^{24}$ molecules s$^{-1}$, assuming globally uniform production and a Haser model. A thermophysical model suggests that Ceress top layer has higher dielectric absorption than lunar-like materials at a wavelength of 1 mm. However, previous observations showed that the dielectric absorption of Ceres decreases towards longer wavelengths. Such distinct dielectric properties might be related to the hydrated phyllosilicate composition of Ceres and possibly abundant $mu$m-sized grains on its surface. The thermal inertia of Ceres is constrained by our modeling as likely being between 40 and 160 tiu, much higher than previous measurements at infrared wavelengths. Modeling also suggests that Ceress lightcurve is likely dominated by spatial variations in its physical or compositional properties that cause changes in Ceress observed thermal properties and dielectric absorption as it rotates.
We report on two millimeter flares detected by ALMA at 220 GHz from AU Mic, a nearby M dwarf. The larger flare had a duration of only $sim35$ sec, with peak $L_{R}=2times10^{15}$ erg s$^{-1}$ Hz$^{-1}$, and lower limit on linear polarization of $|Q/I
We present results of high-resolution imaging toward HL Tau by the Combined Array for Research in Millimeter-wave Astronomy (CARMA). We have obtained 1.3 and 2.7 mm dust continua with an angular resolution down to 0.13 arc second. Through model fitti
The sensitivity of ALMA makes it possible to detect thermal mm/submm emission from small/distant Solar System bodies at the sub-mJy level. Measured fluxes are primarily sensitive to the objects diameters, but deriving precise sizes is somewhat hamper
Clumpy structure in the debris disk around Vega has been previously reported at millimeter wavelengths and attributed to concentrations of dust grains trapped in resonances with an unseen planet. However, recent imaging at similar wavelengths with hi
The thermal emission of transneptunian objects (TNO) and Centaurs has been observed at mid- and far-infrared wavelengths - with the biggest contributions coming from the Spitzer and Herschel space observatories-, and the brightest ones also at sub-mi