The possibility of using non-deterministic circuit components has been gaining significant attention in recent years. The modeling and simulation of their circuits require novel approaches, as now the state of a circuit at an arbitrary moment in time cannot be precisely predicted. Generally, these circuits should be described in terms of probabilities, the circuit variables should be calculated on average, and correlation functions should be used to explore interrelations among the variables. In this paper, we use, for the first time, a master equation to analyze the networks composed of probabilistic binary memristors. Analytical solutions of the master equation for the case of identical memristors connected in-series and in-parallel are found. Our analytical results are supplemented by results of numerical simulations that extend our findings beyond the case of identical memristors. The approach proposed in this paper facilitates the development of probabilistic/stochastic electronic circuits and advance their real-world applications.