ﻻ يوجد ملخص باللغة العربية
The tensor product postulate of quantum mechanics states that the Hilbert space of a composite system is the tensor product of the components Hilbert spaces. All current formalizations of quantum mechanics that do not contain this postulate contain some equivalent postulate or assumption (sometimes hidden). Here we give a natural definition of composite system as a set containing the component systems and show how one can logically derive the tensor product rule from the state postulate and from the measurement postulate. In other words, our paper reduces by one the number of postulates necessary to quantum mechanics.
In the mid-19th century, both the laws of mechanics and thermodynamics were known, and both appeared fundamental. This was changed by Boltzmann and Gibbs, who showed that thermodynamics can be *derived*, by applying mechanics to very large systems, a
It is shown that when properly analyzed using principles consistent with the use of a Hilbert space to describe microscopic properties, quantum mechanics is a local theory: one system cannot influence another system with which it does not interact. C
After recalling different formulations of the definition of supersymmetric quantum mechanics given in the literature, we discuss the relationships between them in order to provide an answer to the question raised in the title.
We present a new experimental approach using a three-path interferometer and find a tighter empirical upper bound on possible violations of Borns Rule. A deviation from Borns rule would result in multi-order interference. Among the potential systemat
In the effort to design and to construct a quantum computer, several leading proposals make use of spin-based qubits. These designs generally assume that spins undergo pairwise interactions. We point out that, when several spins are engaged mutually