ﻻ يوجد ملخص باللغة العربية
The generation and manipulation of ultracold atomic ensembles in the quantum regime require the application of dynamically controllable microwave fields with ultra-low noise performance. Here, we present a low-phase-noise microwave source with two independently controllable output paths. Both paths generate frequencies in the range of $6.835,$GHz $pm$ $25,$MHz for hyperfine transitions in $^{87}$Rb. The presented microwave source combines two commercially available frequency synthesizers: an ultra-low-noise oscillator at $7,$GHz and a direct digital synthesizer for radiofrequencies. We demonstrate a low integrated phase noise of $580,mu$rad in the range of $10,$Hz to $100,$kHz and fast updates of frequency, amplitude and phase in sub-$mu$s time scales. The highly dynamic control enables the generation of shaped pulse forms and the deployment of composite pulses to suppress the influence of various noise sources.
We present an all solid-state narrow line-width laser source emitting $670,mathrm{mW}$ output power at $671,mathrm{nm}$ delivered in a diffraction-limited beam. The linebreak source is based on a fre-quency-doubled diode-end-linebreak pumped ring las
We present a novel approach to precisely synthesize arbitrary polarization states of light with a high modulation bandwidth. Our approach consists of superimposing two laser light fields with the same wavelength, but with opposite circular polarizati
Quantum entanglement has been generated and verified in cold-atom experiments and used to make atom-interferometric measurements below the shot-noise limit. However, current state-of-the-art cold-atom devices exploit separable (i.e. unentangled) atom
The atom-based traceable standard for microwave electrometry shows promising advantages by enabling stable and uniform measurement. Here we theoretically propose and then experimentally realize an alternative direct International System of Units (SI)
Compared to light interferometers, the flux in cold-atom interferometers is low and the associated shot noise large. Sensitivities beyond these limitations require the preparation of entangled atoms in different momentum modes. Here, we demonstrate a