We discuss the unconventional magnetic response and vortex states arising in noncentrosymmetric superconductors with chiral octahedral and tetrahedral ($O$ or $T$) symmetry. We microscopically derive Ginzburg-Landau free energy. It is shown that due to spin-orbit and Zeeman coupling magnetic response of the system can change very significantly with temperature. For sufficiently strong coupling this leads to a crossover from type-1 superconductivity at elevated temperature to vortex states at lower temperature. The external magnetic field decay in such superconductors does not have the simple exponential law. We show that in the London limit, magnetic field can be solved in terms of complex force-free fields $vec{W}$, which are defined by $ abla times vec{W} = text{const} vec{W}$. Using that we demonstrate that the magnetic field of a vortex decays in spirals. Because of such behavior of the magnetic field, the intervortex and vortex-boundary interaction becomes non-monotonic with multiple minima. This implies that vortices form bound states with other vortices, antivortices, and boundaries.