ﻻ يوجد ملخص باللغة العربية
Spinor fields are considered in a generally covariant environment where they can be written in the polar form. The polar form is the one in which spinorial fields are expressed as a module times the exponential of a complex pseudo-phase, and in this form the full spinorial field theory can in turn be expressed by employing only real tensorial quantities. Such a reformulation makes it possible to emphasize properties of the spinorial field theory, and this would enrich our understanding in ways that have never been followed up until this moment.
In this paper, we consider the theory of ELKO written in their polar form, in which the spinorial components are converted into products of a real module times a complex unitary phase while the covariance under spin transformations is still maintaine
In this paper, we perform the polar analysis of the spinorial fields, starting from the regular cases and up to the singular cases: we will give for the first time the polar form of the spinorial field equations for the singular cases constituted by
This paper reviews how a two-state, spin-one-half system transforms under rotations. It then uses that knowledge to explain how momentum-zero, spin-one-half annihilation and creation operators transform under rotations. The paper then explains how a
In this paper, we discuss the equation of state for nonlinear spinor gases in the context of cosmology. The mean energy momentum tensor is similar to that of the prefect fluid, but an additional function of state $W$ is introduced to describe the non
Spinor fields are written in polar form so as to compute their tensorial connection, an object that contains the same information of the connection but which is also proven to be a real tensor. From this, one can still compute the Riemann curvature,