ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonperturbative Dyson-Schwinger equation approach to strongly interacting Dirac fermion systems

90   0   0.0 ( 0 )
 نشر من قبل Guo-Zhu Liu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Studying the strong correlation effects in interacting Dirac fermion systems is one of the most challenging problems in modern condensed matter physics. The long-range Coulomb interaction and the fermion-phonon interaction can lead to a variety of intriguing properties. In the strong-coupling regime, weak-coupling perturbation theory breaks down. The validity of $1/N$ expansion with $N$ being the fermion flavor is also in doubt since $N$ equals to $2$ or $4$ in realistic systems. Here, we investigate the interaction between (1+2)- and (1+3)-dimensional massless Dirac fermions and a generic scalar boson, and develop an efficient non-perturbative approach to access the strong-coupling regime. We first derive a number of self-consistently coupled Ward-Takahashi identities based on a careful symmetry analysis and then use these identities to show that the full fermion-boson vertex function is solely determined by the full fermion propagator. Making use of this result, we rigorously prove that the full fermion propagator satisfies an exact and self-closed Dyson-Schwinger integral equation, which can be solved by employing numerical methods. A major advantage of our non-perturbative approach is that there is no need to employ any small expansion parameter. Our approach provides a unified theoretical framework for studying strong Coulomb and fermion-phonon interactions. It may also be used to approximately handle the Yukawa coupling between fermions and order-parameter fluctuations around continuous quantum critical points. Our approach is applied to treat the Coulomb interaction in undoped graphene. We find that the renormalized fermion velocity exhibits a logarithmic momentum-dependence but is nearly energy independent, and that no excitonic gap is generated by the Coulomb interaction. These theoretical results are consistent with experiments in graphene.



قيم البحث

اقرأ أيضاً

We generalize the recently introduced dual fermion (DF) formalism for disordered fermion systems by including the effect of interactions. For an interacting disordered system the contributions to the full vertex function have to be separated into ela stic and inelastic scattering processes, and addressed differently when constructing the DF diagrams. By applying our approach to the Anderson-Falicov-Kimball model and systematically restoring the nonlocal correlations in the DF lattice calculation, we show a significant improvement over the Dynamical Mean-Field Theory and the Coherent Potential Approximation for both one-particle and two-particle quantities.
We propose a cellular version of dynamical-mean field theory which gives a natural generalization of its original single-site construction and is formulated in different sets of variables. We show how non-orthogonality of the tight-binding basis sets enters the problem and prove that the resulting equations lead to manifestly causal self energies.
Dyson--Schwinger equations are an established, powerful non-perturbative tool for QCD. In the Hamiltonian formulation of a quantum field theory they can be used to perform variational calculations with non-Gaussian wave functionals. By means of the D SEs the various $n$-point functions, needed in expectation values of observables like the Hamilton operator, can be thus expressed in terms of the variational kernels of our trial ansatz. Equations of motion for these variational kernels are derived by minimizing the energy density and solved numerically.
190 - N. Dupuis 2013
We propose a nonperturbative renormalization-group (NPRG) approach to fermion systems in the two-particle-irreducible (2PI) effective action formalism, based on an exact RG equation for the Luttinger-Ward functional. This approach enables us to descr ibe phases with spontaneously broken symmetries while satisfying the Mermin-Wagner theorem. We show that it is possible to choose the Hartree-Fock--RPA theory as initial condition of the RG flow and argue that the 2PI-NPRG is not restricted to the weak-coupling limit. An expansion of the Luttinger-Ward functional about the minimum of the 2PI effective action including only the two-particle 2PI vertex leads to nontrivial RG equations where interactions between fermions and collective excitations naturally emerge.
Any practical application of the Schwinger-Dyson equations to the study of $n$-point Greens functions of a field theory requires truncations, the best known being finite order perturbation theory. Strong coupling studies require a different approach. In the case of QED, gauge covariance is a powerful constraint. By using a spectral representation for the massive fermion propagator in QED, we are able to show that the constraints imposed by the Landau-Khalatnikov-Fradkin transformations are linear operations on the spectral densities. Here we formally define these group operations and show with a couple of examples how in practice they provide a straightforward way to test the gauge covariance of any viable truncation of the Schwinger-Dyson equation for the fermion 2-point function.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا