ترغب بنشر مسار تعليمي؟ اضغط هنا

Path Integral Molecular Dynamics for Fermions: Alleviating the Sign Problem with the Bogoliubov Inequality

162   0   0.0 ( 0 )
 نشر من قبل Barak Hirshberg
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a method for performing path integral molecular dynamics (PIMD) simulations for fermions and address its sign problem. PIMD simulations are widely used for studying many-body quantum systems at thermal equilibrium. However, they assume that the particles are distinguishable and neglect bosonic and fermionic exchange effects. Interacting fermions play a key role in many chemical and physical systems, such as electrons in quantum dots and ultracold trapped atoms. A direct sampling of the fermionic partition function is impossible using PIMD since its integrand is not positive definite. We show that PIMD simulations for fermions are feasible by employing our recently developed method for bosonic PIMD and reweighting the results to obtain fermionic expectation values. The approach is tested against path integral Monte Carlo (PIMC) simulations for up to 7 electrons in a two-dimensional quantum dot for a range of interaction strengths. However, like PIMC, the method suffers from the sign problem at low temperatures. We propose a simple approach for alleviating it by simulating an auxiliary system with a larger average sign and obtaining an upper bound to the energy of the original system using the Bogoliubov inequality. This allows fermions to be studied at temperatures lower than would otherwise have been feasible using PIMD, as demonstrated in the case of a three-electron quantum dot. Our results extend the boundaries of PIMD simulations of fermions and will hopefully stimulate the development of new approaches for tackling the sign problem.



قيم البحث

اقرأ أيضاً

We investigate the continuum limit that the number of beads goes to infinity in the ring polymer representation of thermal averages. Studying the continuum limit of the trajectory sampling equation sheds light on possible preconditioning techniques f or sampling ring polymer configurations with large number of beads. We propose two preconditioned Langevin sampling dynamics, which are shown to have improved stability and sampling accuracy. We present a careful mode analysis of the preconditioned dynamics and show their connections to the normal mode, the staging coordinate and the Matsubara mode representation for ring polymers. In the case where the potential is quadratic, we show that the continuum limit of the preconditioned mass modified Langevin dynamics converges to its equilibrium exponentially fast, which suggests that the finite-dimensional counterpart has a dimension-independent convergence rate. In addition, the preconditioning techniques can be naturally applied to the multi-level quantum systems in the nonadiabatic regime, which are compatible with various numerical approaches.
Trapped Bosons exhibit fundamental physical phenomena and are potentially useful for quantum technologies. We present a method for simulating Bosons using path integral molecular dynamics. A main challenge for simulations is including all permutation s due to exchange symmetry. We show that evaluation of the potential can be done recursively, avoiding explicit enumeration of permutations, and scales cubically with system size. The method is applied to Bosons in a 2D trap and agrees with essentially exact results. An analysis of the role of exchange with decreasing temperature is also presented.
We report an improved method for the calculation of tunneling splittings between degenerate configurations in molecules and clusters using path-integral molecular dynamics (PIMD). Starting from an expression involving a ratio of thermodynamic density matrices at the bottom of the symmetric wells, we use thermodynamic integration with molecular dynamics simulations and a Langevin thermostat to compute the splittings stochastically. The thermodynamic integration is performed by sampling along the semiclassical instanton path, which provides an efficient reaction coordinate as well as being physically well-motivated. This approach allows us to carry out PIMD calculations of the multi-well tunnelling splitting pattern in water dimer, and to refine previous PIMD calculations for one-dimensional models and malonaldehyde. The large (acceptor) splitting in water dimer agrees to within 20% of benchmark variational results, and the smaller splittings are within 10%.
Path integral Monte Carlo approach is used to study the coupled quantum dynamics of the electron and nuclei in hydrogen molecule ion. The coupling effects are demonstrated by comparing differences in adiabatic Born--Oppenheimer and non-adiabatic simu lations, and inspecting projections of the full three-body dynamics onto adiabatic Born--Oppenheimer approximation. Coupling of electron and nuclear quantum dynamics is clearly seen. Nuclear pair correlation function is found to broaden by 0.040 a_0 and average bond length is larger by 0.056 a_0. Also, non-adiabatic correction to the binding energy is found. Electronic distribution is affected less, and therefore, we could say that the adiabatic approximation is better for the electron than for the nuclei.
Path reweighting is a principally exact method to estimate dynamic properties from biased simulations - provided that the path probability ratio matches the stochastic integrator used in the simulation. Previously reported path probability ratios mat ch the Euler-Maruyama scheme for overdamped Langevin dynamics. Since MD simulations use Langevin dynamics rather than overdamped Langevin dynamics, this severely impedes the application of path reweighting methods. Here, we derive the path probability ratio $M_L$ for Langevin dynamics propagated by a variant of the Langevin Leapfrog integrator. This new path probability ratio allows for exact reweighting of Langevin dynamics propagated by this integrator. We also show that a previously derived approximate path probability ratio $M_{mathrm{approx}}$ differs from the exact $M_L$ only by $mathcal{O}(xi^4Delta t^4)$, and thus yields highly accurate dynamic reweighting results. ($Delta t$ is the integration time step, $xi$ is the collision rate.) The results are tested and the efficiency of path-reweighting is explored using butane as an example.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا