ﻻ يوجد ملخص باللغة العربية
We show that the Hamiltonian action satisfies the Palais-Smale condition over a mixed regularity space of loops in cotangent bundles, namely the space of loops with regularity $H^s$, $sin (frac 12, 1)$, in the base and $H^{1-s}$ in the fiber direction. As an application, we give a simplified proof of a theorem of Hofer-Viterbo on the existence of closed characteristic leaves for certain contact type hypersufaces in cotangent bundles.
We describe how the result in [1] extends to prove the existence of a Serre type spectral sequence converging to the symplectic homology SH_*(M) of an exact Sub-Liouville domain M in a cotangent bundle T*N. We will define a notion of a fiber-wise sym
We prove a version of the Arnold conjecture for Lagrangian submanifolds of conformal symplectic manifolds: a Lagrangian $L$ which has non-zero Morse-Novikov homology for the restriction of the Lee form $beta$ cannot be disjoined from itself by a $C^0
We classify symplectically foliated fillings of certain contact foliated manifolds. We show that up to symplectic deformation, the unique minimal symplectically foliated filling of the foliated sphere cotangent bundle of the Reeb foliation in the 3-s
We study configurations of disjoint Lagrangian submanifolds in certain low-dimensional symplectic manifolds from the perspective of the geometry of Hamiltonian maps. We detect infinite-dimensional flats in the Hamiltonian group of the two-sphere equi
In this paper, our goal is to study the regular reduction theory of regular controlled Hamiltonian (RCH) systems with symplectic structure and symmetry, and this reduction is an extension of regular symplectic reduction theory of Hamiltonian systems