ﻻ يوجد ملخص باللغة العربية
Conventional wisdom was that thermal relics from the epoch of reionization (EOR) would vanish swiftly. Recently, however, it was shown that these relics can survive to lower redshifts ($z sim 2$) than previously thought, due to gas at mean density being heated to $T sim 3 times 10^4$ K by reionization, which is inhomogeneous, and shocks. Given the high sensitivities of upcoming Ly$alpha$ forest surveys, this effect will be a novel broadband systematic for cosmological application. From the astrophysical point of view, however, the imprint of inhomogeneous reionization can shed light on the EOR and cosmic dawn. We utilize a hybrid method -- which includes two different simulation codes capable of handling the huge dynamical range -- to show the impact of patchy reionization on the Ly$alpha$ forest and its dependence on different astrophysical scenarios. We found statistically significant deviations in the 1D Ly$alpha$ power spectrum at $k = 0.14$ cMpc$^{-1}$ that range from $sim 1%$ at $z = 2$ up to almost $sim 20%$ at $z = 4$. The deviations in the 3D Ly$alpha$ power spectrum, at the same wavenumber, are large and range from a few per cent at $z = 2$ up to $sim 50%$ at $z = 4$, although these deviations ignore the effect of He II reionization and AGN feedback at $z<4$. By exploiting different $k$-dependence of power spectrum among various astrophysical scenarios, the effect of patchy reionization on the Ly$alpha$ forest power spectrum can open a new window into cosmic reionization and possibly cosmic dawn.
The impact of cosmic reionization on the Ly$alpha$ forest power spectrum has recently been shown to be significant even at low redshifts ($z sim 2$). This memory of reionization survives cosmological time scales because high-entropy mean-density gas
We have developed two independent methods to measure the one-dimensional power spectrum of the transmitted flux in the Lyman-$alpha$ forest. The first method is based on a Fourier transform, and the second on a maximum likelihood estimator. The two m
We present a new compilation of inferences of the linear 3D matter power spectrum at redshift $z,{=},0$ from a variety of probes spanning several orders of magnitude in physical scale and in cosmic history. We develop a new lower-noise method for per
Our understanding of the intergalactic medium at redshifts $z=5$-$6$ has improved considerably in the last few years due to the discovery of quasars with $z>6$ that enable Lyman-$alpha$ forest studies at these redshifts. A realisation from this has b
Concerted effort is currently ongoing to open up the Epoch of Reionization (EoR) ($zsim$15-6) for studies with IR and radio telescopes. Whereas IR detections have been made of sources (Lyman-$alpha$ emitters, quasars and drop-outs) in this redshift r