ﻻ يوجد ملخص باللغة العربية
Data for inelastic processes due to hydrogen atom collisions with manganese and titanium are needed for accurate modeling of the corresponding spectra in late-type stars. In this work excitation and charge transfer in low-energy Mn+H and Ti+H collisions have been studied theoretically using a method based on an asymptotic two-electron linear combination of an atomic orbitals model of ionic-covalent interactions in the neutral atom-hydrogen-atom system, together with the multichannel Landau-Zener model to treat the dynamics. Extensive calculations of charge transfer (mutual neutralization, ion-pair production), excitation and de-excitation processes in the two collisional systems are carried out for all transitions between covalent states dissociating to energies below the first ionic limit and the dominating ionic states. Rate coefficients are determined for temperatures in the range 1000 - 20 000 K in steps of 1000 K. Like for earlier studies of other atomic species, charge transfer processes are found to lead to much larger rate coefficients than excitation processes.
Low-energy inelastic collisions with neutral hydrogen atoms are important processes in stellar atmospheres, and a persistent source of uncertainty in non-LTE modelling of stellar spectra. We have calculated and studied excitation and charge transfer
A theoretical method for the estimation of cross sections and rates for excitation and charge transfer processes in low-energy hydrogen atom collisions with neutral atoms, based on an asymptotic two-electron model of ionic-covalent interactions in th
Electronic and vibrational degrees of freedom in atom-cluster collisions are treated simultaneously and self-consistently by combining time-dependent density functional theory with classical molecular dynamics. The gradual change of the excitation me
Charge transfer in collisions of Na_n^+ cluster ions with Cs atoms is investigated theoretically in the microscopic framework of non-adiabatic quantum molecular dynamics. The competing reaction channels and related processes affecting the charge tran
Interpretation of solar polarization spectra accounting for partial or complete frequency redistribution requires data on various collisional processes. Data for depolarization and polarization transfer are needed but often missing, while data for co