ﻻ يوجد ملخص باللغة العربية
Systematic studies of the two high-temperature monolayer oxygen structures that exist on the (110) tungsten surface were performed using low-energy electron microscopy and diffraction measurements. Our work questions the commonly accepted interpretation from the literature that striped oxygen superstructures arise from alternating site-exchanged (S-E) domains. We postulate that the superstructures originate from a misfit between tungsten and oxygen lattices while the striped appearance corresponds to a moire pattern. Moreover, we show that the two structures, indicated as 113- and 337-phases due to the characteristic directions of the respective moire patterns, differ considerably in their symmetry properties. This suggests that oxygen atoms in the two overlayers occupy different adsorption sites on average. In particular, the 113-phase features rotational domains that retain mirror symmetries with respect to the [001] and [1-10] directions, whereas the 337-phase is characterized by the appearance of additional domains due to the breaking of these symmetries. We propose structural models for both phases that consistently explain their unusual properties and suggest a universal mechanism for the thermal evolution of oxygen monolayer adsorbed on W(110).
The density of two-dimensional Ag adatom gases on W(110) is determined by monitoring local electron reflectivity using low energy electron microscopy (LEEM). This method of adatom concentration measurement can detect changes in adatom density at leas
The noncollinear magnetic state of epitaxial Mn monolayers on tungsten (110) crystal surfaces is investigated by means of soft x-ray absorption spectroscopy, to complement earlier spin-polarized STM experiments. X-ray absorption spectra (XAS), x-ray
Two-dimensional (2D) intrinsic ferromagnetic semiconductors are expected to stand out in the spintronic field. Recently, the monolayer VI$_{3}$ has been experimentally synthesized but the weak ferromagnetism and low Curie temperature ($T_C$) limit it
The structure of the Fe3O4(110)-(1x3) surface was studied with scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), and reflection high energy electron diffraction (RHEED). The so-called one-dimensional reconstruction is chara
We report on the experimental observation by scanning tunneling microscopy at low temperature of ring-like features that appear around Co metal clusters deposited on a clean (110) oriented surface of cleaved p-type InAs crystals. These features are v