ﻻ يوجد ملخص باللغة العربية
Effective hyper-parameter tuning is essential to guarantee the performance that neural networks have come to be known for. In this work, a principled approach to choosing the learning rate is proposed for shallow feedforward neural networks. We associate the learning rate with the gradient Lipschitz constant of the objective to be minimized while training. An upper bound on the mentioned constant is derived and a search algorithm, which always results in non-divergent traces, is proposed to exploit the derived bound. It is shown through simulations that the proposed search method significantly outperforms the existing tuning methods such as Tree Parzen Estimators (TPE). The proposed method is applied to three different existing applications: a) channel estimation in OFDM systems, b) prediction of the exchange currency rates and c) offset estimation in OFDM receivers, and it is shown to pick better learning rates than the existing methods using the same or lesser compute power.
Normalization is known to help the optimization of deep neural networks. Curiously, different architectures require specialized normalization methods. In this paper, we study what normalization is effective for Graph Neural Networks (GNNs). First, we
Federated learning (FL) is a popular technique to train machine learning (ML) models on decentralized data sources. In order to sustain long-term participation of data owners, it is important to fairly appraise each data source and compensate data ow
Generalization performance of stochastic optimization stands a central place in learning theory. In this paper, we investigate the excess risk performance and towards improved learning rates for two popular approaches of stochastic optimization: empi
The variance reduction class of algorithms including the representative ones, SVRG and SARAH, have well documented merits for empirical risk minimization problems. However, they require grid search to tune parameters (step size and the number of iter
A recent Graph Neural Network (GNN) approach for learning to branch has been shown to successfully reduce the running time of branch-and-bound algorithms for Mixed Integer Linear Programming (MILP). While the GNN relies on a GPU for inference, MILP s