ﻻ يوجد ملخص باللغة العربية
We analyze different measures for the backward error of a set of numerical approximations for the roots of a polynomial. We focus mainly on the element-wise mixed backward error introduced by Mastronardi and Van Dooren, and the tropical backward error introduced by Tisseur and Van Barel. We show that these measures are equivalent under suitable assumptions. We also show relations between these measures and the classical element-wise and norm-wise backward error measures.
In two dimensions, we propose and analyze an a posteriori error estimator for finite element approximations of the stationary Navier Stokes equations with singular sources on Lipschitz, but not necessarily convex, polygonal domains. Under a smallness
Various methods can obtain certified estimates for roots of polynomials. Many applications in science and engineering additionally utilize the value of functions evaluated at roots. For example, critical values are obtained by evaluating an objective
Let $G$ be a finite union of disjoint and bounded Jordan domains in the complex plane, let $mathcal{K}$ be a compact subset of $G$ and consider the set $G^star$ obtained from $G$ by removing $mathcal{K}$; i.e., $G^star:=Gsetminus mathcal{K}$. We refe
A thorough backward stability analysis of Hotellings deflation, an explicit external deflation procedure through low-rank updates for computing many eigenpairs of a symmetric matrix, is presented. Computable upper bounds of the loss of the orthogonal
In this work, we study the numerical approximation of a class of singular fully coupled forward backward stochastic differential equations. These equations have a degenerate forward component and non-smooth terminal condition. They are used, for exam