ﻻ يوجد ملخص باللغة العربية
A density-dependent conformal killing vector (CKV) field is attained from a conformally transformed action composed of a unique constraint and a Klein-Gordon field. The CKV is re-expressed into an information identity and studied in its integro-differential form for both null and time-like geodesics. It is conjectured that the identity corresponds to a generalized second law of thermodynamics which holographically relates the covariant entropy contained within a volumetric $n$- and $(n-1)$-form, starting from an $(n-2)$-spatial area. The time-like geodesics inherit an effective `geometric spin while the null geodesics are suggested to obey the generalized covariant entropy bound so long as they conform to Einsteins equation of state. To then comply with the equation of state, a metriplectic system is introduced, whereby a newly defined energy functional is derived for the entropy. Such an entropy functional mediates the Casimir invariants of the Hamiltonian and therefore preserves the symplectic form of quantum mechanics. For null geodesics, the Poisson bracket of the entropy functional with the Hamiltonian is shown to elegantly result in Einsteins energy-mass relation.
We construct a double field theory coupled to the fields present in Vasilievs equations. Employing the semi-covariant differential geometry, we spell a functional in which each term is completely covariant with respect to $mathbf{O}(4,4)$ T-duality,
Applying Clausius relation, $delta Q=TdS$, to apparent horizon of a FRW universe with any spatial curvature, and assuming that the apparent horizon has temperature $T=1/(2pi tilde {r}_A)$, and a quantum corrected entropy-area relation, $S=A/4G +alpha
A classical upper bound for quantum entropy is identified and illustrated, $0leq S_q leq ln (e sigma^2 / 2hbar)$, involving the variance $sigma^2$ in phase space of the classical limit distribution of a given system. A fortiori, this further bounds t
In recent work, we introduced Picard-Lefschetz theory as a tool for defining the Lorentzian path integral for quantum gravity in a systematic semiclassical expansion. This formulation avoids several pitfalls occurring in the Euclidean approach. Our m
We review the covariant canonical formalism initiated by DAdda, Nelson and Regge in 1985, and extend it to include a definition of form-Poisson brackets (FPB) for geometric theories coupled to $p$-forms, gauging free differential algebras. The form-L