ﻻ يوجد ملخص باللغة العربية
Starting from a realistic extended Hubbard model for a $p_{x,y}$-orbital tight-binding model on the Honeycomb lattice, we perform a thorough investigation on the possible electron instabilities in the magic-angle-twisted bilayer-graphene near the van Hove (VH) dopings. Here we focus on the interplay between the SU(2)$times$SU(2) and the $D_3$ symmetries. While the former leads to the degeneracy between the inter-valley SDW and CDW and that between the inter-valley singlet and triplet SCs, the latter leads to the degeneracy and competition among the three symmetry-related wave vectors of the DW orders, originating from the FS-nesting. The interplay between the two degeneracies leads to intriguing quantum states relevant to recent experiments, as revealed by our systematic RPA based calculations followed by a succeeding mean-field energy minimization for the ground state. At the SU(2)$times$SU(2) symmetric point, the degenerate inter-valley SDW and CDW are mixed into a new state of matter dubbed as the chiral SO(4) spin-charge DW. This state simultaneously hosts three mutually perpendicular 4-component vectorial spin-charge DW orders with each adopting one wave vector. In the presence of a tiny inter-valley exchange interaction with coefficient $J_Hto 0^{-}$, a pure chiral SDW state is obtained. In the case of $J_Hto 0^{+}$, a nematic CDW order is accompanied by two SDW orders with equal amplitudes. This nematic CDW+SDW state possesses a stripy distribution of the charge density, consistent with the recent STM observations. On the aspect of SC, while the triplet $p+ip$ and singlet $d+id$ topological SCs are degenerate at $J_H=0$ near the VH dopings, the former (latter) is favored for $J_Hto 0^{-}$ ($J_Hto 0^{+}$). In addition, the two asymmetric doping-dependent behaviors of the superconducting Tc obtained are well consistent with experiments.
We study theoretically many-body properties of magic-angle twisted bilayer graphene for different doping levels. Our investigation is focused on the emergence, stability, and manifestations of nematicity of the ordered low-temperature electronic stat
We present a systematic study of the low-energy collective modes for different insulating states at integer fillings in twisted bilayer graphene. In particular, we provide a simple counting rule for the total number of soft modes, and analyze their e
The flat bands of magic-angle twisted bilayer graphene (MATBG) host strongly-correlated electronic phases such as correlated insulators, superconductors and a strange metal state. The latter state, believed to hold the key to a deeper understanding o
We report on a fully self-consistent Hartree-Fock calculation of interaction effects on the Moire flat bands of twisted bilayer graphene, assuming that valley U(1) symmetry is respected. We use realistic band structures and interactions and focus on
A purely electronic mechanism is proposed for the unconventional superconductivity recently observed in twisted bilayer graphene (tBG) close to the magic angle. Using the Migdal-Eliashberg framework on a one parameter effective lattice model for tBG