ﻻ يوجد ملخص باللغة العربية
I study the statistical description of a small quantum system, which is coupled to a large quantum environment in a generic form and with a generic interaction strength, when the total system lies in an equilibrium state described by a microcanonical ensemble. The focus is on the difference between the reduced density matrix (RDM) of the central system in this interacting case and the RDM obtained in the uncoupled case. In the eigenbasis of the central systems Hamiltonian, it is shown that the difference between diagonal elements is mainly confined by the ratio of the maximum width of the eigenfunctions of the total system in the uncoupled basis to the width of the microcanonical energy shell; meanwhile, the difference between off-diagonal elements is given by the ratio of certain property of the interaction Hamiltonian to the related level spacing of the central system. As an application, a sufficient condition is given, under which the RDM may have a canonical Gibbs form under system-environment interactions that are not necessarily weak; this Gibbs state usually includes certain averaged effect of the interaction. For central systems that interact locally with many-body quantum chaotic systems, it is shown that the RDM usually has a Gibbs form. I also study the RDM which is computed from a typical state of the total system within an energy shell.
Using parallels with the quantum scattering theory, developed for processes in nuclear and mesoscopic physics and quantum chaos, we construct a reduced Google matrix $G_R$ which describes the properties and interactions of a certain subset of selecte
We probe the theoretical connection among three different approaches to analyze the entanglement of identical particles, i.e., the first quantization language (1QL), elementary-symmetric/exterior products (which has the mathematical equivalence to no
Decoherence is believed to deteriorate the ability of a purification scheme that is based on the idea of driving a system to a pure state by repeatedly measuring another system in interaction with the former and hinder for a pure state to be extracte
Based on a generalization of Hohenberg-Kohns theorem, we propose a ground state theory for bosonic quantum systems. Since it involves the one-particle reduced density matrix $gamma$ as a natural variable but still recovers quantum correlations in an
Dynamical quantum phase transitions (DQPTs) extend the concept of phase transitions and thus universality to the non-equilibrium regime. In this letter, we investigate DQPTs in a string of ions simulating interacting transverse-field Ising models. We