ترغب بنشر مسار تعليمي؟ اضغط هنا

Three-dimensional random dielectric colloid metamaterial with giant isotropic optical activity

75   0   0.0 ( 0 )
 نشر من قبل Viktar Asadchy
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by the theoretical observation that isotropic chirality can exist even in completely random systems, we design a dielectric metamaterial consisting of a random colloid of meta-atoms, which exhibits unprecedentedly high isotropic optical activity. Each meta-atom is composed of a helically arranged cluster of silicon nanospheres. Such clusters can be fabricated by large-scale DNA self-assembly techniques. It is demonstrated that the use of a high concentration of the meta-atoms in the colloid provides significant suppressions of incoherent scattering losses. As a result, the proposed system shows three orders of magnitude improvement of isotropic optical activity as compared with the previous metamaterial designs. This work highlights the significant potential of completely random system, which are commonly produced in colloidal sciences, for applications as metamaterials towards novel photonic effects and devices.



قيم البحث

اقرأ أيضاً

Recent work predicted the existence of isotropic chiral phonon dispersion relations of the lowest bands connected to isotropic acoustical activity in cubic crystalline approximants of 3D chiral icosahedral metamaterial quasicrystals. While these arch itectures are fairly broadband and presumably robust against fabrication tolerances due to orientation averaging, they are extremely complex, very hard to manufacture experimentally, and they show effects which are about an order of magnitude smaller compared to those of ordinary highly anisotropic chiral cubic metamaterial crystals. Here, we propose and analyze a chiral triclinic metamaterial crystal exhibiting broadband isotropic acoustical activity. These 3D truss lattices are much less complex and exhibit substantially larger effects than the 3D quasicrystals at the price of being somewhat more susceptible to fabrication tolerances. This susceptibility originates from the fact that we have tailored the lowest two transverse phonon bands to exhibit an accidental degeneracy in momentum space.
143 - Yuqian Ye , Sailing He 2010
A bilayered chiral metamaterial (CMM) is proposed to realize a 90 degree polarization rotator, whose giant optical activity is due to the transverse magnetic dipole coupling among the metallic wire pairs of enantiomeric patterns. By transmission thro ugh this thin bilayered structure of less than lambda/30 thick, a linearly polarized wave is converted to its cross polarization with a resonant polarization conversion efficiency (PCE) of over 90%. Meanwhile, the axial ratio of the transmitted wave is better than 40 dB. It is demonstrated that the chirality in the propagation direction makes this efficient cross-polarization conversion possible. The transversely isotropic property of this polarization rotator is also experimentally verified. The optical activity of the present structure is about 2700 degree/lambda, which is the largest optical activity that can be found in literature.
High-index dielectrics can confine light into nano-scale leading to enhanced nonlinear response. However, increased momentum in these media can deteriorate the overlap between different harmonics which hinders efficient nonlinear interaction in wavel ength-scale resonators in the absence of momentum matching. Here, we propose an alternative approach for light confinement in anisotropic particles. The extra degree of freedom in anisotropic media allows us to control the evanescent waves near the center and the radial momentum away from the center, independently. This can lead to a strong light confinement as well as an excellent field overlap between different harmonics which is ideal for nonlinear wavelength conversion. Controlling the evanescent fields can also help to surpass the constrains on the radiation bandwidth of isotropic dielectric antennas. This can improve the light coupling into these particles, which is crucial for nano-scale nonlinear optics. We estimate the second-harmonic generation efficiency as well as optical parametric oscillation threshold in these particles to show the strong nonlinear response in these particles even away from the center of resonances. Our approach is promising to be realized experimentally and can be used for many applications, such as large-scale parallel sensing and computing.
The textbook-accepted formulation of electromagnetic force was proposed by Lorentz in the 19th century, but its validity has been challenged due to incompatibility with the special relativity and momentum conservation. The Einstein-Laub formulation, which can reconcile those conflicts, was suggested as an alternative to the Lorentz formulation. However, intense debates on the exact force are still going on due to lack of experimental evidence. Here, we report the first experimental investigation of angular symmetry of optical force inside a solid dielectric, aiming to distinguish the two formulations. The experiments surprisingly show that the optical force exerted by a Gaussian beam has components with the angular mode number of both 2 and 0, which cannot be explained solely by the Lorentz or the Einstein-Laub formulation. Instead, we found a modified Helmholtz theory by combining the Lorentz force with additional electrostrictive force could explain our experimental results. Our results represent a fundamental leap forward in determining the correct force formulation, and will update the working principles of many applications involving electromagnetic forces.
We report a realization of three-dimensional (3D) electromagnetic void space. Despite occupying a finite volume of space, such a medium is optically equivalent to an infinitesimal point where electromagnetic waves experience no phase accumulation. Th e 3D void space is realized by constructing all-dielectric 3D photonic crystals such that the effective permittivity and permeability vanish simultaneously, forming a six-fold Dirac-like point with Dirac-like linear dispersions at the center of the Brillouin Zone. We demonstrate, both theoretically and experimentally, that such a 3D void space exhibits unique properties and rich functionalities absent in any other electromagnetic media, such as boundary-control transmission switching and 3D perfect wave-steering mechanisms. Especially, contrary to the photonic doping effect in its two-dimensional counterpart, the 3D void space exhibits an amazing property of impurity-immunity. Our work paves a road towards the realization of 3D void space where electromagnetic waves can be manipulated in unprecedented ways.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا