ﻻ يوجد ملخص باللغة العربية
Ion-conducting solid electrolytes are widely used for a variety of purposes. Therefore, designing highly ion-conductive materials is in strongly demand. Because of advancement in computers and enhancement of computational codes, theoretical simulations have become effective tools for investigating the performance of ion-conductive materials. However, an exhaustive search conducted by theoretical computations can be prohibitively expensive. Further, for practical applications, both dynamic conductivity as well as static stability must be satisfied at the same time. Therefore, we propose a computational framework that simultaneously optimizes dynamic conductivity and static stability; this is achieved by combining theoretical calculations and the Bayesian multi-objective optimization that is based on the Pareto hyper-volume criterion. Our framework iteratively selects the candidate material, which maximizes the expected increase in the Pareto hyper-volume criterion; this is a standard optimality criterion of multi-objective optimization. Through two case studies on oxygen and lithium diffusions, we show that ion-conductive materials with high dynamic conductivity and static stability can be efficiently identified by our framework.
Ion Beam Analysis (IBA) comprises a set of analytical techniques suited for material analysis, many of which are rather closely related. Self-consistent analysis of several IBA techniques takes advantage of this close relationship to combine differen
We present a scale-bridging approach based on a multi-fidelity (MF) machine-learning (ML) framework leveraging Gaussian processes (GP) to fuse atomistic computational model predictions across multiple levels of fidelity. Through the posterior varianc
This paper studies an entropy-based multi-objective Bayesian optimization (MBO). The entropy search is successful approach to Bayesian optimization. However, for MBO, existing entropy-based methods ignore trade-off among objectives or introduce unrel
Lithium metasilicate (Li2SiO3) has attracted considerable interest as a promising electrolyte material for potential use in lithium batteries. However, its electronic properties are still not thoroughly understood. In this work, density functional th
Particle accelerators require constant tuning during operation to meet beam quality, total charge and particle energy requirements for use in a wide variety of physics, chemistry and biology experiments. Maximizing the performance of an accelerator f