ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysing the causal effect of London cycle superhighways on traffic congestion

94   0   0.0 ( 0 )
 نشر من قبل Prajamitra Bhuyan Dr.
 تاريخ النشر 2020
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Transport operators have a range of intervention options available to improve or enhance their networks. Such interventions are often made in the absence of sound evidence on resulting outcomes. Cycling superhighways were promoted as a sustainable and healthy travel mode, one of the aims of which was to reduce traffic congestion. Estimating the impacts that cycle superhighways have on congestion is complicated due to the non-random assignment of such intervention over the transport network. In this paper, we analyse the causal effect of cycle superhighways utilising pre-intervention and post-intervention information on traffic and road characteristics along with socio-economic factors. We propose a modeling framework based on the propensity score and outcome regression model. The method is also extended to the doubly robust set-up. Simulation results show the superiority of the performance of the proposed method over existing competitors. The method is applied to analyse a real dataset on the London transport network. The methodology proposed can assist in effective decision making to improve network performance.



قيم البحث

اقرأ أيضاً

This paper quantifies the effect of speed cameras on road traffic collisions using an approximate Bayesian doubly-robust (DR) causal inference estimation method. Previous empirical work on this topic, which shows a diverse range of estimated effects, is based largely on outcome regression (OR) models using the Empirical Bayes approach or on simple before and after comparisons. Issues of causality and confounding have received little formal attention. A causal DR approach combines propensity score (PS) and OR models to give an average treatment effect (ATE) estimator that is consistent and asymptotically normal under correct specification of either of the two component models. We develop this approach within a novel approximate Bayesian framework to derive posterior predictive distributions for the ATE of speed cameras on road traffic collisions. Our results for England indicate significant reductions in the number of collisions at speed cameras sites (mean ATE = -15%). Our proposed method offers a promising approach for evaluation of transport safety interventions.
Treatment effects on asymmetric and heavy tailed distributions are better reflected at extreme tails rather than at averages or intermediate quantiles. In such distributions, standard methods for estimating quantile treatment effects can provide misl eading inference due to the high variability of the estimators at the extremes. In this work, we propose a novel method which incorporates a heavy tailed component in the outcome distribution to estimate the extreme tails and simultaneously employs quantile regression to model the remainder of the distribution. The threshold between the bulk of the distribution and the extreme tails is estimated by utilising a state of the art technique. Simulation results show the superiority of the proposed method over existing estimators for quantile causal effects at extremes in the case of heavy tailed distributions. The method is applied to analyse a real dataset on the London transport network. In this application, the methodology proposed can assist in effective decision making to improve network performance, where causal inference in the extremes for heavy tailed distributions is often a key aim.
For many power-limited networks, such as wireless sensor networks and mobile ad hoc networks, maximizing the network lifetime is the first concern in the related designing and maintaining activities. We study the network lifetime from the perspective of network science. In our dynamic network, nodes are assigned a fixed amount of energy initially and consume the energy in the delivery of packets. We divided the network traffic flow into four states: no, slow, fast, and absolute congestion states. We derive the network lifetime by considering the state of the traffic flow. We find that the network lifetime is generally opposite to traffic congestion in that the more congested traffic, the less network lifetime. We also find the impacts of factors such as packet generation rate, communication radius, node moving speed, etc., on network lifetime and traffic congestion.
112 - V. Vilasini , Roger Colbeck 2019
Understanding cause-effect relationships is a crucial part of the scientific process. As Bells theorem shows, within a given causal structure, classical and quantum physics impose different constraints on the correlations that are realisable, a funda mental feature that has technological applications. However, in general it is difficult to distinguish the set of classical and quantum correlations within a causal structure. Here we investigate a method to do this based on using entropy vectors for Tsallis entropies. We derive constraints on the Tsallis entropies that are implied by (conditional) independence between classical random variables and apply these to causal structures. We find that the number of independent constraints needed to characterise the causal structure is prohibitively high such that the computations required for the standard entropy vector method cannot be employed even for small causal structures. Instead, without solving the whole problem, we find new Tsallis entropic constraints for the triangle causal structure by generalising known Shannon constraints. Our results reveal new mathematical properties of classical and quantum Tsallis entropies and highlight difficulties of using Tsallis entropies for analysing causal structures.
We present a model to describe the inbound air traffic over a congested hub. We show that this model gives a very accurate description of the traffic by the comparison of our theoretical distribution of the queue with the actual distribution observed over Heathrow airport. We discuss also the robustness of our model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا