We report the hole doping dependencies of the pseudogap phase energy scale, $2Delta_{rm PG}$, the anti-nodal (nodal) superconducting energy scales $2Delta^{AN}_{rm SC}$ ($2Delta^{N}_{rm SC}$) and the charge density wave energy scale, $2Delta_{rm CDW}$. They have been extracted from the electronic Raman responses of distinct copper oxide families. For all the cuprates studied, we reveal universal doping dependencies which suggest that $2Delta_{rm PG}$, $2Delta^{AN}_{rm SC}$ and $2Delta_{rm CDW}$ are governed by common microscopic interactions and that these interactions become relevant well above the superconducting transition at $T_c$. In sharp contrast, $2Delta^N_{rm SC}$ tracks the doping dependence of $T_c$, appearing to be controlled by a different kind of interactions than the energy scales above.