ترغب بنشر مسار تعليمي؟ اضغط هنا

Subaru medium-resolution spectra of a QSO at z=6.62: Three reionization tests

393   0   0.0 ( 0 )
 نشر من قبل Ting-Yi Lu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Investigating the Gunn-Peterson trough of high redshift quasars (QSOs) is a powerful way to reveal the cosmic reionization. As one of such attempts, we perform a series of analyses to examine the absorption lines observed with one of the highest redshift QSOs, PSO J006.1240+39.2219, which we previously discovered at z = 6.62. Using the Subaru telescope, we obtained medium-resolution spectrum with a total exposure time of 7.5 hours. We calculate the Ly$alpha$ transmission in different redshift bins to determine the near zone radius and the optical depth at 5.6$<$z$<$6.5. We find a sudden change in the Ly$alpha$ transmission at 5.75$<$z$<$5.86, which is consistent with the result from the literature. The near zone radius of the QSO is 5.79$pm$0.09 $p$Mpc, within the scatter of the near zone radii of other QSOs measured in previous studies. We also analyze the dark gap distribution to probe the neutral hydrogen fractions beyond the saturation limit of the Gunn-Peterson trough. We extend the measurement of the dark gaps to 5.7$<$z$<$6.3. We find that the gap widths increase with increasing redshifts, suggesting more neutral Universe at higher redshifts. However, these measurements strongly depend on the continuum modeling. As a continuum model-free attempt, we also perform the dark-pixel counting analysis, to find the upper limit of $langle x_{rm H I} rangle sim$0.6 (0.8) at $z<$5.8 ($z>$5.8). All three analyses based on this QSO show increasingly neutral hydrogen towards higher redshifts, adding precious measurements up to z$sim$6.5.



قيم البحث

اقرأ أيضاً

We present Keck II NIRSPEC rest-frame optical spectra for three recently discovered lensed galaxies: the Cosmic Horseshoe (z = 2.38), the Clone (z = 2.00), and SDSS J090122.37+181432.3 (z = 2.26). The boost in signal-to-noise ratio (S/N) from gravita tional lensing provides an unusually detailed view of the physical conditions in these objects. A full complement of high S/N rest-frame optical emission lines is measured, spanning from rest-frame 3600 to 6800AA, including robust detections of fainter lines such as H-gamma, [SII]6717,6732, and in one instance [NeII]3869. SDSS J090122.37+181432.3 shows evidence for AGN activity, and therefore we focus our analysis on star-forming regions in the Cosmic Horseshoe and the Clone. For these two objects, we estimate a wide range of physical properties, including star-formation rate (SFR), metallicity, dynamical mass, and dust extinction. In all respects, the lensed objects appear fairly typical of UV-selected star-forming galaxies at z~2. The Clone occupies a position on the emission-line diagnostic diagram of [OIII]/H-beta vs. [NII]/H-alpha that is offset from the locations of z~0 galaxies. Our new NIRSPEC measurements may provide quantitative insights into why high-redshift objects display such properties. From the [SII] line ratio, high electron densities (~1000 cm^(-3)) are inferred compared to local galaxies, and [OIII]/[OII] line ratios indicate higher ionization parameters compared to the local population. Building on previous similar results at z~2, these measurements provide further evidence (at high S/N) that star-forming regions are significantly different in high-redshift galaxies, compared to their local counterparts (abridged).
We compare a sample of five high-resolution, high S/N Ly$alpha$ forest spectra of bright $6<z lesssim 6.5$ QSOs aimed at spectrally resolving the last remaining transmission spikes at $z>5$ with those obtained from mock absorption spectra from the Sh erwood and Sherwood-Relics suites of hydrodynamical simulations of the intergalactic medium (IGM). We use a profile fitting procedure for the inverted transmitted flux, $1-F$, similar to the widely used Voigt profile fitting of the transmitted flux $F$ at lower redshifts, to characterise the transmission spikes that probe predominately underdense regions of the IGM. We are able to reproduce the width and height distributions of the transmission spikes, both with optically thin simulations of the post-reionization Universe using a homogeneous UV background and full radiative transfer simulations of a late reionization model. We find that the width of the fitted components of the simulated transmission spikes is very sensitive to the instantaneous temperature of the reionized IGM. The internal structures of the spikes are more prominant in low temeperature models of the IGM. The width distribution of the observed transmission spikes, which require high spectral resolution ($leq $ 8 km/s) to be resolved, is reproduced for optically thin simulations with a temperature at mean density of $T_0= (11000 pm 1600,10500pm 2100,12000 pm 2200)$ K at $z= (5.4,5.6,5.8)$. This is weakly dependent on the slope of the temperature-density relation, which is favoured to be moderately steeper than isothermal. In the inhomogeneous, late reionization, full radiative transfer simulations where islands of neutral hydrogen persist to $zsim5.3$, the width distribution of the observed transmission spikes is consistent with the range of $T_0$ caused by spatial fluctuations in the temperature-density relation.
Absorption signatures in the spectra of QSOs are one of our most powerful tools for studying galactic and intergalactic environments at high redshifts. With the discovery of QSOs out to z > 7, QSO absorption lines are now tracing the end stages of re ionization on multiple fronts using the hydrogen Lyman-$alpha$ forest and heavy element absorbers. Next-generation QSO absorption line studies with large optical/IR telescopes will reveal in detail how the first galaxies emerged form the cosmic web, transformed their circum- and inter-galactic environments, and completed the last major phase transition of the Universe. These efforts will complement other upcoming studies of reionization, such as those with JWST, ALMA, and redshifted 21cm experiments.
We present an analysis of the environment of six QSO triplets at 1 $lesssim$ z $lesssim$ 1.5 by analyzing multiband (r,i,z, or g,r,i) images obtained with Megacam at the CFHT telescope, aiming to investigate whether they are associated or not with ga laxy protoclusters. This was done by using photometric redshifts trained using the high accuracy photometric redshifts of the COSMOS2015 catalogue. To improve the quality of our photometric redshift estimation, we included in our analysis near-infrared photometry (3.6 and 4.5 $mu m$) from the unWISE survey available for our fields and the COSMOS survey. This approach allowed us to obtain good photometric redshifts with dispersion, as measured with the robust Sigma NMAD statistics of $sim$ 0.04 for our six fields. Our analysis setup was reproduced on lightcones constructed from the Millennium Simulation data and the latest version of the L-GALAXIES semi-analytic model to verify the protocluster detectability in such conditions. The density field in a redshift slab containing each triplet was then analyzed with a Gaussian kernel density estimator. We did not find any significant evidence of the triplets inhabiting dense structures, such as a massive galaxy cluster or protocluster.
Distant luminous quasars provide important information on the growth of the first supermassive black holes, their host galaxies and the epoch of reionization. The identification of quasars is usually performed through detection of their Lyman-$alpha$ line redshifted to $sim$ 0.9 microns at z>6.5. Here, we report the discovery of a very Lyman-$alpha$ luminous quasar, PSO J006.1240+39.2219 at redshift z=6.618, selected based on its red colour and multi-epoch detection of the Lyman-$alpha$ emission in a single near-infrared band. The Lyman-$alpha$-line luminosity of PSO J006.1240+39.2219 is unusually high and estimated to be 0.8$times$10$^{12}$ Solar luminosities (about 3% of the total quasar luminosity). The Lyman-$alpha$ emission of PSO J006.1240+39.2219 shows fast variability on timescales of days in the quasar rest frame, which has never been detected in any of the known high-redshift quasars. The high luminosity of the Lyman-$alpha$ line, its narrow width and fast variability resemble properties of local Narrow-Line Seyfert 1 galaxies which suggests that the quasar is likely at the active phase of the black hole growth accreting close or even beyond the Eddington limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا