Resolving complex spin textures in nanoparticles by magnetic neutron scattering


الملخص بالإنكليزية

In the quest to image the three-dimensional magnetization structure we show that the technique of magnetic small-angle neutron scattering (SANS) is highly sensitive to the details of the internal spin structure of nanoparticles. By combining SANS with numerical micromagnetic computations we study the transition from single-domain to multi-domain behavior in nanoparticles and its implications for the ensuing magnetic SANS cross section. Above the critical single-domain size we find that the cross section and the related correlation function cannot be described anymore with the uniform particle model, resulting e.g. in deviations from the well-known Guinier law. We identify a clear signature for the occurrence of a vortex-like spin structure at remanence. The micromagnetic approach to magnetic SANS bears great potential for future investigations, since it provides fundamental insights into the mesoscale magnetization profile of nanoparticles.

تحميل البحث