ﻻ يوجد ملخص باللغة العربية
Energy dissipation in water is very fast and more efficient than in many other liquids. This behavior is commonly attributed to the intermolecular interactions associated with hydrogen bonding. Here, we investigate the dynamic energy flow in the hydrogen-bond network of liquid water by a pump-probe experiment. We resonantly excite intermolecular degrees of freedom with ultrashort single-cycle terahertz pulses and monitor its Raman response. By using ultrathin sample-cell windows, a background-free bipolar signal whose tail relaxes mono-exponentially is obtained. The relaxation is attributed to the molecular translational motions, using complementary experiments, force-field and ab initio molecular dynamics simulations. They reveal an initial coupling of the terahertz electric field to the molecular rotational degrees of freedom whose energy is rapidly transferred, within the excitation pulse duration, to the restricted-translational motion of neighboring molecules. This rapid energy transfer may be rationalized by the strong anharmonicity of the intermolecular interactions.
Over the years, plenty of classical interaction potentials for water have been developed and tested against structural, dynamical and thermodynamic properties. On the other hands, it has been recently observed (F. Martelli et. al, textit{ACS Nano}, t
Hydrogen bond (H-bond) covalency has recently been observed in ice and liquid water, while the penetrating molecular orbitals (MOs) in the H-bond region of most typical water dimer system, (H2O)2, have also been discovered. However, obtaining the qua
Many studies have revealed that confined water chain flipping is closely related to the spatial size and even quantum effects of the confinement environment. Here, we show that these are not the only factors that affect the flipping process of a conf
We present an analytical model for the role of hydrogen bonding on the spin-orbit coupling of model DNA molecule. Here we analyze in detail the electric fields due to the polarization of the Hydrogen bond on the DNA base pairs and derive, within tigh
We present results for a lattice model of bio-polymers where the type of $beta$-sheet formation can be controlled by different types of hydrogen bonds depending on the relative orientation of close segments of the polymer. Tuning these different inte