ﻻ يوجد ملخص باللغة العربية
Phonon polaritons (PhPs), the collective phonon oscillations with hybridized electromagnetic fields, concentrate optical fields in the mid-infrared frequency range that matches the vibrational modes of molecules. The utilization of PhPs holds the promise for chemical sensing tools and polariton-enhanced nanospectroscopy. However, investigations and innovations on PhPs in the aqueous phase remains stagnant, because of the lack of in situ mid-infrared nano-imaging methods in water. Strong infrared absorption from water prohibits optical delivery and detection in the mid-infrared for scattering-type near-field microscopy. Here, we present our solution: the detection of photothermal responses caused by the excitation of PhPs by liquid phase peak force infrared (LiPFIR) microscopy. Characteristic interference fringes of PhPs in 10B isotope-enriched h-BN were measured in the aqueous phase and their dispersion relationship extracted. LiPFIR enables the measurement of mid-infrared PhPs in the fluid phase, opening possibilities, and facilitating the development of mid-IR phonon polaritonics in water.
We experimentally resolve the dispersion of multiple vibro-polariton modes issued from the strong coupling of different vibrational bands of the methylene group (CH2) in a 2.56$mu$m thick polyethylene film with the confined modes of a mid-infrared Fa
In recent years there has been significant fundamental research into phonon polaritons, owing to their ability to compress light to extremely small dimensions, low-losses, and ability to support anisotropic propagation. In this perspective, after bri
Nanofocusing of light offers new technological opportunities for the delivery and manipulation of electromagnetic fields at sub-diffraction limited length scales. Here, we show that hyperbolic phonon polarity,HPP, modes in the mid infrared as support
Van der Waals heterostructures assembled from layers of 2D materials have attracted considerable interest due to their novel optical and electrical properties. Here we report a scattering-type scanning near field optical microscopy study of hexagonal
Hyperbolic polariton modes are highly appealing for a broad range of applications in nanophotonics, including surfaced enhanced sensing, sub-diffractional imaging and reconfigurable metasurfaces. Here we show that attenuated total reflectance micro-s