ﻻ يوجد ملخص باللغة العربية
The pn junction is a fundamental electrical component in modern electronics and optoelectronics. Currently, there is a great deal of interest in the two-dimensional (2D) pn junction. Although many experiments have demonstrated the working principle, there is a lack of fundamental understanding of its basic properties and expected performances, in particular when the device is driven out of equilibrium. To fill the current gap in understanding, we investigate the electrostatics and electronic transport of 2D lateral pn junctions. To do so we implement a physics-based simulator that selfconsistently solves the 2D Poissons equation coupled to the drift-diffusion and continuity equations. Notably, the simulator takes into account the strong influence of the out of plane electric field through the surrounding dielectric, capturing the weak screening of charge carriers. Supported by simulations, we propose a Shockley-like equation for the ideal current voltage characteristics, in full analogy to the bulk junction after defining an effective depletion layer (EDL). We also discuss the impact of recombination generation processes inside the EDL, which actually produce a significant deviation with respect to the ideal behavior, consistently with experimental data. Moreover, we analyze the capacitances and conductance of the 2D lateral pn junction. Based on its equivalent circuit we investigate its cut-off frequency targeting RF applications. To gain deeper insight into the role played by material dimensionality, we benchmark the performances of single-layer MoS2 (2D) lateral pn junctions against those of the Si (3D) junction. Finally, a practical discussion on the short length 2D junction case together with the expected impact of interface states has been provided. Given the available list of 2D materials, this work opens the door to a wider exploration of material dependent performances.
We address the out-of-equilibrium thermodynamics of an isolated quantum system consisting of a cavity optomechanical device. We explore the dynamical response of the system when driven out of equilibrium by a sudden quench of the coupling parameter a
Several pn junctions were constructed from mechanically exfoliated ultrawide bandgap (UWBG) beta-phase gallium oxide (b{eta}-Ga2O3) and p-type gallium nitride (GaN). The mechanical exfoliation process, which is described in detail, is similar to that
2D bismuth oxyselenide (Bi2O2Se) with high electron mobility shows great potential for nanoelectronics. Although in-plane properties of Bi2O2Se have been widely studied, its out-ofplane electrical transport behavior remains elusive, despite its impor
In thermodynamic equilibrium, current in metallic systems is carried by electronic states near the Fermi energy whereas the filled bands underneath contribute little to conduction. Here we describe a very different regime in which carrier distributio
We calculate the conductances of a three-way junction of spinless Luttinger-liquid wires as functions of bias voltages applied to three independent Fermi-liquid reservoirs. In particular, we consider the setup that is characteristic of a tunneling ex