ترغب بنشر مسار تعليمي؟ اضغط هنا

The determination of stellar temperatures from Baron B. Harkanyi to the Gaia mission

276   0   0.0 ( 0 )
 نشر من قبل Kristof Petrovay
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Kristof Petrovay




اسأل ChatGPT حول البحث

The first determination of the surface temperature of stars other than the Sun is due to the Hungarian astrophysicist Bela Harkanyi. Prompted by the recent unprecedented increase in the availability of stellar temperature estimates from Gaia, coinciding with the 150th anniversary of Harkanyis birth, this article presents the life and work of this neglected, yet remarkable figure in the context of the history of stellar astrophysics.



قيم البحث

اقرأ أيضاً

192 - L. Eyer , B. Holl , D. Pourbaix 2013
Gaia is a very ambitious mission of the European Space Agency. At the heart of Gaia lie the measurements of the positions, distances, space motions, brightnesses and astrophysical parameters of stars, which represent fundamental pillars of modern ast ronomical knowledge. We provide a brief description of the Gaia mission with an emphasis on binary stars. In particular, we summarize results of simulations, which estimate the number of binary stars to be processed to several tens of millions. We also report on the catalogue release scenarios. In the current proposal, the first results for binary stars will be available in 2017 (for a launch in 2013).
88 - F.Mignard 2019
I provide a summary of the ESA space astrometry mission Gaia regarding its main objectives and current status following the 2nd data release (Gaia DR2) in April 2018. The Gaia achievements in astrometry are assessed with a historical perspective by c omparing the DR2 content to sky surveys or parallax searches over the last two centuries. One shows that Gaia sounds more like a big leap into a new world than an incremental progress in this field.
We present new colour -- effective temperature (Teff) transformations based on the photometry of the early third data release (EDR3) of the Gaia/ESA mission. These relations are calibrated on a sample of about 600 dwarf and giant stars for which Teff have been previously determined with the InfraRed Flux Method from dereddened colours. The 1$sigma$ dispersion of the transformations is of 60-80 K for the pure Gaia colours BP-RP, BP-G , G-RP, improving to 40-60 K for colours including the 2MASS K-band, namely BP-K, RP-K and G-K, We validate these relations in the most challenging case of dense stellar fields, where the Gaia EDR3 photometry could be less reliable, providing guidance for a safe use of Gaia colours in crowded environments . We compare the Teff from the Gaia EDR3 colours with those obtained from standard V-K colours for stars in three Galactic globular clusters of different metallicity, namely NGC 104, NGC 6752 and NGC 7099. The agreement between the two estimates of Teff is excellent, with mean differences between -50 and +50 K, depending on the colour, and with 1$sigma$ dispersions around the mean Teff differences of 25-50 K for most of the colours and below 10 K for BP-K and G-K . This demonstrates that these colours are analogue to V-K , as Teff indicators.
On the 19th of December 2013, the Gaia spacecraft was successfully launched by a Soyuz rocket from French Guiana and started its amazing journey to map and characterise one billion celestial objects with its one billion pixel camera. In this presenta tion, we briefly review the general aims of the mission and describe what has happened since launch, including the Ecliptic Pole scanning mode. We also focus especially on binary stars, starting with some basic observational aspects, and then turning to the remarkable harvest that Gaia is expected to yield for these objects.
The Gaia-ESO Survey (GES) is a large public spectroscopic survey at the European Southern Observatory Very Large Telescope. A key aim is to provide precise radial velocities (RVs) and projected equatorial velocities (v sin i) for representative sampl es of Galactic stars, that will complement information obtained by the Gaia astrometry satellite. We present an analysis to empirically quantify the size and distribution of uncertainties in RV and v sin i using spectra from repeated exposures of the same stars. We show that the uncertainties vary as simple scaling functions of signal-to-noise ratio (S/N) and v sin i, that the uncertainties become larger with increasing photospheric temperature, but that the dependence on stellar gravity, metallicity and age is weak. The underlying uncertainty distributions have extended tails that are better represented by Students t-distributions than by normal distributions. Parametrised results are provided, that enable estimates of the RV precision for almost all GES measurements, and estimates of the v sin i precision for stars in young clusters, as a function of S/N, v sin i and stellar temperature. The precision of individual high S/N GES RV measurements is 0.22-0.26 km/s, dependent on instrumental configuration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا