ﻻ يوجد ملخص باللغة العربية
In semi-supervised learning, information from unlabeled examples is used to improve the model learned from labeled examples. But in some learning problems, partial label information can be inferred from otherwise unlabeled examples and used to further improve the model. In particular, partial label information exists when subsets of training examples are known to have the same label, even though the label itself is missing. By encouraging a model to give the same label to all such examples, we can potentially improve its performance. We call this encouragement emph{Nullspace Tuning} because the difference vector between any pair of examples with the same label should lie in the nullspace of a linear model. In this paper, we investigate the benefit of using partial label information using a careful comparison framework over well-characterized public datasets. We show that the additional information provided by partial labels reduces test error over good semi-supervised methods usually by a factor of 2, up to a factor of 5.5 in the best case. We also show that adding Nullspace Tuning to the newer and state-of-the-art MixMatch method decreases its test error by up to a factor of 1.8.
Partial-label learning (PLL) is a multi-class classification problem, where each training example is associated with a set of candidate labels. Even though many practical PLL methods have been proposed in the last two decades, there lacks a theoretic
Partial multi-label learning (PML) models the scenario where each training instance is annotated with a set of candidate labels, and only some of the labels are relevant. The PML problem is practical in real-world scenarios, as it is difficult and ev
Partial-label learning (PLL) is a typical weakly supervised learning problem, where each training instance is equipped with a set of candidate labels among which only one is the true label. Most existing methods elaborately designed learning objectiv
We study the problem of online path learning with non-additive gains, which is a central problem appearing in several applications, including ensemble structured prediction. We present new online algorithms for path learning with non-additive count-b
In this paper, we propose online algorithms for multiclass classification using partial labels. We propose two variants of Perceptron called Avg Perceptron and Max Perceptron to deal with the partial labeled data. We also propose Avg Pegasos and Max