ﻻ يوجد ملخص باللغة العربية
Sea-land segmentation is an important process for many key applications in remote sensing. Proper operative sea-land segmentation for remote sensing images remains a challenging issue due to complex and diverse transition between sea and lands. Although several Convolutional Neural Networks (CNNs) have been developed for sea-land segmentation, the performance of these CNNs is far from the expected target. This paper presents a novel deep neural network structure for pixel-wise sea-land segmentation, a Residual Dense U-Net (RDU-Net), in complex and high-density remote sensing images. RDU-Net is a combination of both down-sampling and up-sampling paths to achieve satisfactory results. In each down- and up-sampling path, in addition to the convolution layers, several densely connected residual network blocks are proposed to systematically aggregate multi-scale contextual information. Each dense network block contains multilevel convolution layers, short-range connections and an identity mapping connection which facilitates features re-use in the network and makes full use of the hierarchical features from the original images. These proposed blocks have a certain number of connections that are designed with shorter distance backpropagation between the layers and can significantly improve segmentation results whilst minimizing computational costs. We have performed extensive experiments on two real datasets Google Earth and ISPRS and compare the proposed RDUNet against several variations of Dense Networks. The experimental results show that RDUNet outperforms the other state-of-the-art approaches on the sea-land segmentation tasks.
Semantic segmentation of remote sensing images plays an important role in a wide range of applications including land resource management, biosphere monitoring and urban planning. Although the accuracy of semantic segmentation in remote sensing image
The Medico: Multimedia Task 2020 focuses on developing an efficient and accurate computer-aided diagnosis system for automatic segmentation [3]. We participate in task 1, Polyps segmentation task, which is to develop algorithms for segmenting polyps
Automated vascular segmentation on optical coherence tomography angiography (OCTA) is important for the quantitative analyses of retinal microvasculature in neuroretinal and systemic diseases. Despite recent improvements, artifacts continue to pose c
In radiotherapy planning, manual contouring is labor-intensive and time-consuming. Accurate and robust automated segmentation models improve the efficiency and treatment outcome. We aim to develop a novel hybrid deep learning approach, combining conv
Retinal blood vessel can assist doctors in diagnosis of eye-related diseases such as diabetes and hypertension, and its segmentation is particularly important for automatic retinal image analysis. However, it is challenging to segment these vessels s