ترغب بنشر مسار تعليمي؟ اضغط هنا

Methodology and Performance of the Two-Year Galactic Plane Scanning Survey of Insight-HXMT

80   0   0.0 ( 0 )
 نشر من قبل Na Sai
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Galactic plane scanning survey is one of the main scientific objectives of the Hard X-ray Modulation Telescope (known as Insight-HXMT). During the two-year operation of Insight-HXMT, more than 1000 scanning observations have been performed and the whole Galactic plane ($rm 0^{circ}<l<360^{circ}$, $rm -10^{circ}<b<10^{circ}$) has been covered completely. We summarize the Galactic plane scanning survey of Insight-HXMT for two years, including the characteristics of the scanning data, the data analysis process and the preliminary results of the Low-Energy telescope, the Medium-Energy telescope and the High-Energy telescope. With the light curve PSF fitting method, the fluxes of the known sources in the scanned area as well as the flux errors are obtained for each scanning observation. From the relationships of SNRs and fluxes, the $5sigma$ sensitivities of three telescopes of Insight-HXMT are estimated as $rm sim7.6times10^{-11}~erg cm^{-2}~s^{-1}$ ($rm 3 mCrab,~1-6 keV$), $rm sim4.0times10^{-10}~erg~cm^{-2}~s^{-1}$ ($rm 20~mCrab,~7-40 keV$) and $rm sim2.6times10^{-10}~erg cm^{-2}~s^{-1}$ ($rm 18 mCrab,~25-100 keV$) for an individual scanning observation of $2-3$ hours, respectively. Up to September 2019, more than 800 X-ray sources with various types are monitored by the three telescopes and their long-term light curves with three energy bands are obtained to make further scientific analyses.



قيم البحث

اقرأ أيضاً

With more than 150 blank sky observations at high Galactic latitude, we make a systematic study to the background of the Low Energy Telescope (LE) of the Hard X-ray Modulation Telescope (dubbed as Insight-HXMT). Both the on-ground simulation and the in-orbit observation indicate that the background spectrum mainly has two components. One is the particle background that dominates above 7 keV and its spectral shape is consistent in every geographical locations. Another is the diffuse X-ray background that dominates below 7 keV and has a stable spectrum less dependent of the sky region. The particle background spectral shape can be obtained from the blind detector data of all the blank sky observations, and the particle background intensity can be measured by the blind detector at 10-12.5 keV. The diffuse X-ray background in the high Galactic latitude can also be obtained from the blank sky spectra after subtracting the particle background. Based on these characteristics, we develop the background model for both the spectrum and the light curve. The systematic error for the background spectrum is investigated with different exposures (T_exp). For the spectrum with T_exp=1 ks, the average systematic errors in 1-7 keV and 1-10 keV are 4.2% and 3.7%, respectively. We also perform the systematic error analyses of the background light curves with different energy bands and time bins. The results show that the systematic errors for the light curves with different time bins are <8% in 1-10 keV.
Accurate background estimation is essential for spectral and temporal analysis in astrophysics. In this work, we construct the in-orbit background model for the High-Energy Telescope (HE) of the Hard X-ray Modulation Telescope (dubbed as Insight-HXMT ). Based on the two-year blank sky observations of Insight-HXMT/HE, we first investigate the basic properties of the background and find that both the background spectral shape and intensity have long-term evolution at different geographical sites. The entire earth globe is then divided into small grids, each with a typical area of 5x5 square degrees in geographical coordinate system. For each grid, an empirical function is used to describe the long-term evolution of each channel of the background spectrum; the intensity of the background can be variable and a modification factor is introduced to account for this variability by measuring the contemporary flux of the blind detector. For a given pointing observation, the background model is accomplished by integrating over the grids that are passed by the track of the satellite in each orbit. Such a background model is tested with both the blank sky observations and campaigns for observations of a series of celestial sources. The results show an average systematic error of 1.5% for the background energy spectrum (26-100 keV) under a typical exposure of 8 ks, and <3% for background light curve estimation (30-150 keV). Therefore, the background model introduced in this paper is included in the Insight-HXMT software as a standard part specialized for both spectral and temporal analyses.
110 - Q. Remy , L. Tibaldo , F. Acero 2021
Observations with the current generation of very-high-energy gamma-ray telescopes have revealed an astonishing variety of particle accelerators in the Milky Way, such as supernova remnants, pulsar wind nebulae, and binary systems. The upcoming Cheren kov Telescope Array (CTA) will be the first instrument to enable a survey of the entire Galactic plane in the energy range from a few tens of GeV to 300 TeV with unprecedented sensitivity and improved angular resolution. In this contribution we will revisit the scientific motivations for the survey, proposed as a Key ScienceProject for CTA. We will highlight recent progress, including improved physically-motivated models for Galactic source populations and interstellar emission, advance on the optimization of the survey strategy, and the development of pipelines to derive source catalogues tested on simulated data. Based on this, we will provide a new forecast on the properties of the sources thatCTA will detect and discuss the expected scientific return from the study of gamma-ray source populations.
The Tsinghua University-National Astronomical Observatories of China (NAOC) Transient Survey (TNTS) is an automatic survey for a systematic exploration of optical transients (OTs), conducted with a 60/90 cm Schmidt telescope at Xinglong station of NA OC. This survey repeatedly covers ~ 1000 square degrees of the north sky with a cadence of 3-4 days. With an exposure of 60 s, the survey reaches a limited unfiltered magnitude of about 19.5 mag. This enables us to discover supernovae at their relatively young stages. In this paper, we describe the overall performance of our survey during the first year and present some preliminary results.
The third-generation instrument for the 10-meter South Pole Telescope, SPT-3G, was first installed in January 2017. In addition to completely new cryostats, secondary telescope optics, and readout electronics, the number of detectors in the focal pla ne has increased by an order of magnitude from previous instruments to ~16,000. The SPT-3G focal plane consists of ten detector modules, each with an array of 269 trichroic, polarization-sensitive pixels on a six-inch silicon wafer. Within each pixel is a broadband, dual-polarization sinuous antenna; the signal from each orthogonal linear polarization is divided into three frequency bands centered at 95, 150, and 220 GHz by in-line lumped element filters and transmitted via superconducting microstrip to Ti/Au transition-edge sensor (TES) bolometers. Properties of the TES film, microstrip filters, and bolometer island must be tightly controlled to achieve optimal performance. For the second year of SPT-3G operation, we have replaced all ten wafers in the focal plane with new detector arrays tuned to increase mapping speed and improve overall performance. Here we discuss the TES superconducting transition temperature and normal resistance, detector saturation power, bandpasses, optical efficiency, and full array yield for the 2018 focal plane.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا