ترغب بنشر مسار تعليمي؟ اضغط هنا

A femto-Tesla DC SQUID design for quantum-ready readouts

159   0   0.0 ( 0 )
 نشر من قبل Ilya Sochnikov
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Among some of the current uses of the DC Superconducting QUantum Interference Devices (SQUIDs) are qubit-readouts and sensors for probing properties of quantum materials. We present a rather unique gradiometric niobium SQUID design with state-of-the-art sensitivity in the femto-Tesla range which can be easily tuned to specific readout requirements. The sensor is a next generation of the fractional SQUIDs with tightly optimized input coil and a combination of all measures known for restraining parasitic resonances and other detrimental effects. Our design combines the practical usefulness of well-defined pickup loops for superior imaging kernel and tunable-probing applications with the fractionalization approach to reduce undesired inductances. In addition, our modeling predicts small dimensions for these planar sensors. These features make them of high relevance for material studies and for detection of magnetic fields in small volumes, e.g. as part of a cryogenic scanning quantum imaging apparatus for efficient diagnostics and quantum device readouts. This manuscript will benefit scientists and engineers working on quantum computing technologies by clarifying potential general misconceptions about DC SQUID optimization alongside the introduction of the novel flexible compact DC SQUID design.



قيم البحث

اقرأ أيضاً

We study voltage response of nano-bridge based DC-SQUID fabricated on a Si_{3}N_{4} membrane. Such a configuration may help in reducing 1/f noise, which originates from substrate fluctuating defects. We find that the poor thermal coupling between the DC-SQUID and the substrate leads to strong hysteretic response of the SQUID, even though it is biased by an alternating current. In addition, when the DC-SQUID is biased near a threshold of spontaneous oscillations, the measured voltage has an intermittent pattern, which depends on the applied magnetic flux through the SQUID.
We study the metastable response of a highly hysteretic DC-SQUID made of a Niobium loop interrupted by two nano-bridges. We excite the SQUID with an alternating current and with direct magnetic flux, and find different stability zones forming diamond -like structures in the measured voltage across the SQUID. When such a SQUID is embedded in a transmission line resonator similar diamond structures are observed in the reflection pattern of the resonator. We have calculated the DC-SQUID stability diagram in the plane of the exciting control parameters, both analytically and numerically. In addition, we have obtained numerical simulations of the SQUID equations of motion, taking into account temperature variations and non-sinusoidal current-phase relation of the nano-bridges. Good agreement is found between experimental and theoretical results.
We analyze the behavior of a dc Superconducting Quantum Interference Device (SQUID) phase qubit in which one junction acts as a phase qubit and the rest of the device provides isolation from dissipation and noise in the bias leads. Ignoring dissipati on, we find the two-dimensional Hamiltonian of the system and use numerical methods and a cubic approximation to solve Schrodingers equation for the eigenstates, energy levels, tunneling rates, and expectation value of the currents in the junctions. Using these results, we investigate how well this design provides isolation while preserving the characteristics of a phase qubit. In addition, we show that the expectation value of current flowing through the isolation junction depends on the state of the qubit and can be used for non-destructive read out of the qubit state.
We investigate the quantum dynamics of a quadratic-quartic anharmonic oscillator formed by a potential well between two potential barriers. We realize this novel potential shape with a superconducting circuit comprised of a loop interrupted by two Jo sephson junctions, with near-zero current bias and flux bias near half a flux quantum. We investigate escape out of the central well, which can occur via tunneling through either of the two barriers, and find good agreement with a generalized double-path macroscopic quantum tunneling theory. We also demonstrate that this system exhibits an optimal line in current and flux bias space along which the oscillator, which can be operated as a phase qubit, is insensitive to decoherence due to low-frequency current fluctuations.
We report measurements of Rabi oscillations and spectroscopic coherence times in an Al/AlOx/Al and three Nb/AlOx/Nb dc SQUID phase qubits. One junction of the SQUID acts as a phase qubit and the other junction acts as a current-controlled nonlinear i solating inductor, allowing us to change the coupling to the current bias leads in situ by an order of magnitude. We found that for the Al qubit a spectroscopic coherence time T2* varied from 3 to 7 ns and the decay envelope of Rabi oscillations had a time constant T = 25 ns on average at 80 mK. The three Nb devices also showed T2* in the range of 4 to 6 ns, but T was 9 to 15 ns, just about 1/2 the value we found in the Al device. For all the devices, the time constants were roughly independent of the isolation from the bias lines, implying that noise and dissipation from the bias leads were not the principal sources of dephasing and inhomogeneous broadening.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا