ﻻ يوجد ملخص باللغة العربية
The structure of the molten salt (LiF)$_{0.465}$(NaF)$_{0.115}$(KF)$_{0.42}$ (FLiNaK), a potential coolant for molten salt nuclear reactors, has been studied by ab initio molecular dynamics simulations and neutron total scattering experiments. We find that the salt retains well-defined short-range structural correlations out to approximately 9 Angstroms at typical reactor operating temperatures. The experimentally determined pair distribution function can be described with quantitative accuracy by the molecular dynamics simulations. These results indicate that the essential ionic interactions are properly captured by the simulations, providing a launching point for future studies of FLiNaK and other molten salts for nuclear reactor applications.
High-resolution inelastic x-ray scattering measurements were carried out on molten NaI near the melting point at 680$^circ$C at SPring-8. Small and damped indications of longitudinal optic excitation modes were observed on the tails of the longitudin
The MAX phases are a family of of ternary layered material with both metal and ceramic properties, and it is also precursor ma-terials for synthesis of two-dimensional MXenes. The theory predicted that there are more than 600 stable ternary layered M
Environmental concerns are the chief drive for more innovative recycling techniques for end-of-life polymeric products. One attractive option is taking advantage of C and H content of polymeric waste in steelmaking industry. In this work, we examined
We present a tutorial on the principles of crystal growth of intermetallic and oxide compounds from molten solutions, with an emphasis on the fundamental principles governing the underlying phase equilibria and phase diagrams of multicomponent systems.
Molecular dynamics simulations of the temperature dependent crystal growth rates of the salts, NaCl and ZnS, from their melts are reported, along with those of a number of pure metals. The growth rate of NaCl and the FCC-forming metals show little ev