ﻻ يوجد ملخص باللغة العربية
The performance of the Ultra-Fast Silicon Detectors (UFSD) after irradiation with neutrons and protons is compromised by the removal of acceptors in the thin layer below the junction responsible for the gain. This effect is tested both with C-V measurements of the doping concentration and with measurements of charge collection using charged particles. We find a perfect linear correlation between the bias voltage to deplete the gain layer determined with C-V and the bias voltage to collect a defined charge, measured with charge collection. An example for the usefulness of this correlation is presented.
The removal of Radon induced Lead from liquid scintillator was extensively studied in preparation for KamLANDs low background phase. This work presents the results from laboratory experiments performed at the University of Alabama and their implicati
The removal of radioactivity from liquid scintillator has been studied in preparation of a low background phase of KamLAND. This paper describes the methods and techniques developed to measure and efficiently extract radon decay products from liquid
This paper describes the performance of a prototype timing detector, based on 50 micrometer thick Ultra Fast Silicon Detector, as measured in a beam test using a 180 GeV/c momentum pion beam. The dependence of the time precision on the pixel capacita
The MOLLER experiment proposed at the Thomas Jefferson National Accelerator Facility plans a precision low energy determination of the weak mixing angle via the measurement of the parity-violating asymmetry in the scattering of high energy longitudin
The discovery of argon from underground sources with significantly less 39Ar than atmospheric argon was an important step in the development of direct-detection dark matter experiments using argon as the active target. We report on the design and ope