ﻻ يوجد ملخص باللغة العربية
Networks of interdisciplinary teams, biological interactions as well as food webs are examples of networks that are shaped by complementarity principles: connections in these networks are preferentially established between nodes with complementary properties. We propose a geometric framework for complementarity-driven networks. In doing so we first argue that traditional geometric representations, e.g., embeddings of networks into latent metric spaces, are not applicable to complementarity-driven networks due to the contradiction between the triangle inequality in latent metric spaces and the non-transitivity of complementarity. We then propose the cross-geometric representation for these complementarity-driven networks and demonstrate that this representation (i) follows naturally from the complementarity rule, (ii) is consistent with the metric property of the latent space, (iii) reproduces structural properties of real complementarity-driven networks, if the latent space is the hyperbolic disk, and (iv) allows for prediction of missing links in complementarity-driven networks with accuracy surpassing existing similarity-based methods. The proposed framework challenges social network analysis intuition and tools that are routinely applied to complementarity-driven networks and offers new avenues towards descriptive and prescriptive analysis of systems in science of science and biomedicine.
Proximity networks are time-varying graphs representing the closeness among humans moving in a physical space. Their properties have been extensively studied in the past decade as they critically affect the behavior of spreading phenomena and the per
Virtually all real-world networks are dynamical entities. In social networks, the propensity of nodes to engage in social interactions (activity) and their chances to be selected by active nodes (attractiveness) are heterogeneously distributed. Here,
We study the effect of heterogeneous temporal activations on epidemic spreading in temporal networks. We focus on the susceptible-infected-susceptible (SIS) model on activity-driven networks with burstiness. By using an activity-based mean-field appr
We consider an epidemic process on adaptive activity-driven temporal networks, with adaptive behaviour modelled as a change in activity and attractiveness due to infection. By using a mean-field approach, we derive an analytical estimate of the epide
Despite the abundance of bipartite networked systems, their organizing principles are less studied, compared to unipartite networks. Bipartite networks are often analyzed after projecting them onto one of the two sets of nodes. As a result of the pro