ﻻ يوجد ملخص باللغة العربية
Clean materials are required to construct and operate many low-background physics experiments. High-purity copper has found broad use because of its physical properties and availability. In this paper, we describe methods to assay and mitigate $^{210}$Pb contamination on copper surfaces, such as from exposure to environmental radon or coming from bulk impurities. We evaluated the efficacy of wet etching on commercial samples and observed that $^{210}$Po contamination from the copper bulk does not readily pass into solution. During the etch, the polonium appears to trap at the copper-etchant boundary, such that it is effectively concentrated at the copper surface. We observed a different behavior for $^{210}$Pb; high-sensitivity measurements of the alpha emissivity versus time indicate the lowest level of $^{210}$Pb contamination ever reported for a commercial copper surface: $0pm12$ nBq/cm$^2$ (1$sigma$). Additionally, we have demonstrated the effectiveness of mitigating trace $^{210}$Pb and $^{210}$Po surface backgrounds using custom, high-purity electroplating techniques. These approaches were evaluated utilizing assays performed with an XIA UltraLo-1800 alpha spectrometer.
We established a method to assay $^{210}$Pb and $^{210}$Po contaminations in the bulk of copper samples using a low-background alpha particle counter. The achieved sensitivity for the $^{210}$Pb and $^{210}$Po contaminations reaches a few mBq/kg. Due
The next generation low-background detectors operating deep underground aim for unprecedented low levels of radioactive backgrounds. The deposition and presence of radon progeny on detector surfaces is an added source of energetic background events.
In this work, the $^{222}$Rn contamination mechanisms on acrylic surfaces have been investigated. $^{222}$Rn can represent a significant background source for low-background experiments, and acrylic is a suitable material for detector design thanks t
Assay methods for measuring 238U, 232Th, and 210Pb concentrations in refined lead are presented. The 238U and 232Th concentrations are determined using isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS) after anion exchange col
The BGO calorimeter, which provides a wide measurement range of the primary cosmic ray spectrum, is a key sub-detector of Dark Matter Particle Explorer (DAMPE). The readout electronics of calorimeter consists of 16 pieces of Actel ProASIC Plus FLASH-