ﻻ يوجد ملخص باللغة العربية
Context: Solar-like protostars are known to be chemically rich, but it is not yet clear how much their chemical composition can vary and why. So far, two chemically distinct types of Solar-like protostars have been identified: hot corinos, which are enriched in interstellar Complex Organic Molecules (iCOMs), such as methanol (CH$_3$OH) or dimethyl ether (CH$_3$OCH$_3$), and Warm Carbon Chain Chemistry (WCCC) objects, which are enriched in carbon chain molecules, such as butadiynyl (C$_4$H) or ethynyl radical (CCH). However, none of these have been studied so far in environments similar to that in which our Sun was born, that is, one that is close to massive stars. Aims: In this work, we search for hot corinos and WCCC objects in the closest analogue to the Suns birth environment, the Orion Molecular Cloud 2/3 (OMC-2/3) filament located in the Orion A molecular cloud. Methods: We obtained single-dish observations of CCH and CH$_3$OH line emission towards nine Solar-like protostars in this region. As in other, similar studies of late, we used the [CCH]/[CH$_3$OH] abundance ratio in order to determine the chemical nature of our protostar sample. Results: Unexpectedly, we found that the observed methanol and ethynyl radical emission (over a few thousands au scale) does not seem to originate from the protostars but rather from the parental cloud and its photo-dissociation region, illuminated by the OB stars of the region. Conclusions: Our results strongly suggest that caution should be taken before using [CCH]/[CH$_3$OH] from single-dish observations as an indicator of the protostellar chemical nature and that there is a need for other tracers or high angular resolution observations for probing the inner protostellar layers.
We present new measurements of the dust emissivity index, beta, for the high-mass, star-forming OMC 2/3 filament. We combine 160-500 um data from Herschel with long-wavelength observations at 2 mm and fit the spectral energy distributions across a ~
The electron density ($n_{e^{-}}$) plays an important role in setting the chemistry and physics of the interstellar medium. However, measurements of $n_{e^{-}}$ in neutral clouds have been directly obtained only toward a few lines of sight or they re
The spectral energy distribution (SED) in the millimetre (mm) to centimetre (cm) range is a useful tool for characterising the dust in protostellar envelopes as well as free-free emission from the protostar and outflow. While many studies have been c
Methyl formate, HCOOCH$_3$, and many of its isotopologues have been detected in astrophysical regions with considerable abundances. However, the recipe for the formation of this molecule and its isotopologues is not yet known. In this work, we attemp
Previous continuum observations from the MUSTANG camera on the Green Bank Telescope (GBT) of the nearby star-forming filament OMC 2/3 found elevated emission at 3.3 mm relative to shorter wavelength data. As a consequence, the inferred dust emissivit