ﻻ يوجد ملخص باللغة العربية
Recent advances of deep learning lead to great success of image and video super-resolution (SR) methods that are based on convolutional neural networks (CNN). For video SR, advanced algorithms have been proposed to exploit the temporal correlation between low-resolution (LR) video frames, and/or to super-resolve a frame with multiple LR frames. These methods pursue higher quality of super-resolved frames, where the quality is usually measured frame by frame in e.g. PSNR. However, frame-wise quality may not reveal the consistency between frames. If an algorithm is applied to each frame independently (which is the case of most previous methods), the algorithm may cause temporal inconsistency, which can be observed as flickering. It is a natural requirement to improve both frame-wise fidelity and between-frame consistency, which are termed spatial quality and temporal quality, respectively. Then we may ask, is a method optimized for spatial quality also optimized for temporal quality? Can we optimize the two quality metrics jointly?
Video super-resolution, which aims at producing a high-resolution video from its corresponding low-resolution version, has recently drawn increasing attention. In this work, we propose a novel method that can effectively incorporate temporal informat
Recently, deep learning based video super-resolution (SR) methods have achieved promising performance. To simultaneously exploit the spatial and temporal information of videos, employing 3-dimensional (3D) convolutions is a natural approach. However,
Space-time video super-resolution (STVSR) aims to increase the spatial and temporal resolutions of low-resolution and low-frame-rate videos. Recently, deformable convolution based methods have achieved promising STVSR performance, but they could only
Video super-resolution (VSR), with the aim to restore a high-resolution video from its corresponding low-resolution version, is a spatial-temporal sequence prediction problem. Recently, Transformer has been gaining popularity due to its parallel comp
High-resolution satellite imagery has proven useful for a broad range of tasks, including measurement of global human population, local economic livelihoods, and biodiversity, among many others. Unfortunately, high-resolution imagery is both infreque