ترغب بنشر مسار تعليمي؟ اضغط هنا

Electric-field-induced modulation of thermal conductivity in poly(vinylidene fluoride)

80   0   0.0 ( 0 )
 نشر من قبل Shichen Deng
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Phonon engineering focuses on heat transport modulation on atomic-scale. Different from reported methods, it is shown that electric field can also modulate heat transport in ferroelectric polymers, poly(vinylidene fluoride), by both simulation and measurement. Interestingly, thermal conductivities of poly(vinylidene fluoride) array can be enhanced by a factor of 3.25 along the polarization direction by simulation. The semi-crystalline poly(vinylidene fluoride) film can be also enhanced by a factor of 1.5 which is found by both simulation and measurement. The morphology and phonon property analysis reveal that the enhancement arises from the higher inter-chain lattice order, stronger inter-chain interaction, higher phonon group velocity and suppressed phonon scattering. This study offers a new modulation strategy with quick response and without fillers.



قيم البحث

اقرأ أيضاً

Herein, we elucidate the impact of tubular confinement on the structure and relaxation behaviour of poly(vinylidene difluoride) (PVDF) and how these affect the para-/ferroelectric behavior of this polymer. We use PVDF nanotubes that were solidified i n anodic aluminum oxide (AAO) templates. Dielectric spectroscopy measurements evidence a bimodal relaxation process for PVDF nanotubes: besides the bulk-like -relaxation, we detect a notably slower relaxation that is associated with the PVDF regions of restricted dynamics at the interface with the AAO pore. Strickingly, both the bulk-like and the interfacial relaxation tend to become temperature independent as the temperature increases - a behavior that has been observed before in inorganic relaxor ferroelectrics. In line with this, we observe that the real part of the dielectric permittivity of the PVDF nanotubes exhibits a broad maximum when plotted against the temperature, which is, again, a typical feature of relaxor ferroelectrics. As such, we propose that in nanotubular PVDF, ferroelectric-like nanodomains are formed in the amorphous phase regions adjacent to the AAO interface. These ferroelectric nanodomains may result from an anisotropic chain conformation and a preferred orientation of local dipoles due to selective H-bond formation between the PVDF macromolecues and the AAO walls. Such relaxor-ferroelectric-like behaviour has not been observed for non-irradiated PVDF homopolymer; our findings thus may enable in the future alternative applications for this bulk commodity plastic, e.g., for the production of electrocaloric devices for solid-state refrigeration which benefit from a relaxor-ferroelectric-like response.
130 - M.M. Glazov , S.D. Ganichev 2013
The nonlinear optical and optoelectronic properties of graphene with the emphasis on the processes of harmonic generation, frequency mixing, photon drag and photogalvanic effects as well as generation of photocurrents due to coherent interference eff ects, are reviewed. The article presents the state-of-the-art of this subject, including both recent advances and well-established results. Various physical mechanisms controlling transport are described in depth including phenomenological description based on symmetry arguments, models visualizing physics of nonlinear responses, and microscopic theory of individual effects.
The Curie temperature is one of the most fundamental physical properties of ferromagnetic materials and can be described by Weiss molecular field theory with the exchange interaction of neighboring atoms. Recently, the electric-field-induced modulati on of the Curie temperature has been demonstrated in transition metals. This can be interpreted as indirect evidence for the electrical modulation of exchange coupling. However, the scenario has not yet been experimentally verified. Here, we demonstrate the electrical control of exchange coupling in cobalt film from direct magnetization measurements. We find that the reduction in magnetization with temperature, which is caused by thermal spin wave excitation and scales with Blochs law, clearly depends on the applied electric field. Furthermore, we confirm that the correlation between the electric-field-induced modulation of the Curie temperature and that of exchange coupling follows Weiss molecular field theory.
We conduct a combined experimental and theoretical study of the quantum-confined Stark effect in GaAs/AlGaAs quantum dots obtained with the local droplet etching method. In the experiment, we probe the permanent electric dipole and polarizability of neutral and positively charged excitons weakly confined in GaAs quantum dots by measuring their light emission under the influence of a variable electric field applied along the growth direction. Calculations based on the configuration-interaction method show excellent quantitative agreement with the experiment and allow us to elucidate the role of Coulomb interactions among the confined particles and -- even more importantly -- of electronic correlation effects on the Stark shifts. Moreover, we show how the electric field alters properties such as built-in dipole, binding energy, and heavy-light hole mixing of multiparticle complexes in weakly confining systems, underlining the deficiencies of commonly used models for the quantum-confined Stark effect.
Over the past years, transition metal dichalcogenides (TMDs) have attracted attention as potential building blocks for various electronic applications due to their atomically thin nature. An exciting development is the recent success in engineering c rystal phases of TMD compounds during the growth due to their polymorphic character. Here, we report an electric field induced reversible engineered phase transition in vertical 2H-MoTe2 devices, a crucial experimental finding that enables electrical phase switching for these ultra-thin layered materials. Scanning tunneling microscopy (STM) was utilized to analyze the TMD crystalline structure after applying an electric field, and scanning tunneling spectroscopy (STS) was employed to map a semiconductor-to-metal phase transition on the nanoscale. In addition, direct confirmation of a phase transition from 2H semiconductor to a distorted 2H metallic phase was obtained by scanning transmission electron microscopy (STEM). MoTe2 and Mo1-xWxTe2 alloy based vertical resistive random access memory (RRAM) cells were fabricated to demonstrate clear reproducible and controlled switching with programming voltages that are tunable by the layer thickness and that show a distinctly different trend for the binary compound if compared to the ternary materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا