ﻻ يوجد ملخص باللغة العربية
Sample inefficiency of deep reinforcement learning methods is a major obstacle for their use in real-world applications. In this work, we show how human demonstrations can improve final performance of agents on the Minecraft minigame ObtainDiamond with only 8M frames of environment interaction. We propose a training procedure where policy networks are first trained on human data and later fine-tuned by reinforcement learning. Using a policy exploitation mechanism, experience replay and an additional loss against catastrophic forgetting, our best agent was able to achieve a mean score of 48. Our proposed solution placed 3rd in the NeurIPS MineRL Competition for Sample-Efficient Reinforcement Learning.
Reinforcement learning has achieved great success in various applications. To learn an effective policy for the agent, it usually requires a huge amount of data by interacting with the environment, which could be computational costly and time consumi
Residual reinforcement learning (RL) has been proposed as a way to solve challenging robotic tasks by adapting control actions from a conventional feedback controller to maximize a reward signal. We extend the residual formulation to learn from visua
Reinforcement learning (RL) algorithms usually require a substantial amount of interaction data and perform well only for specific tasks in a fixed environment. In some scenarios such as healthcare, however, usually only few records are available for
Recent theoretical work studies sample-efficient reinforcement learning (RL) extensively in two settings: learning interactively in the environment (online RL), or learning from an offline dataset (offline RL). However, existing algorithms and theori
In this paper, we study Reinforcement Learning from Demonstrations (RLfD) that improves the exploration efficiency of Reinforcement Learning (RL) by providing expert demonstrations. Most of existing RLfD methods require demonstrations to be perfect a