ﻻ يوجد ملخص باللغة العربية
In many robot control problems, factors such as stiffness and damping matrices and manipulability ellipsoids are naturally represented as symmetric positive definite (SPD) matrices, which capture the specific geometric characteristics of those factors. Typical learned skill models such as dynamic movement primitives (DMPs) can not, however, be directly employed with quantities expressed as SPD matrices as they are limited to data in Euclidean space. In this paper, we propose a novel and mathematically principled framework that uses Riemannian metrics to reformulate DMPs such that the resulting formulation can operate with SPD data in the SPD manifold. Evaluation of the approach demonstrates that beneficial properties of DMPs such as change of the goal during operation apply also to the proposed formulation.
Biological systems, including human beings, have the innate ability to perform complex tasks in versatile and agile manner. Researchers in sensorimotor control have tried to understand and formally define this innate property. The idea, supported by
Movement primitives are an important policy class for real-world robotics. However, the high dimensionality of their parametrization makes the policy optimization expensive both in terms of samples and computation. Enabling an efficient representatio
The realization of motion description is a challenging work for fixed-wing Unmanned Aerial Vehicle (UAV) acrobatic flight, due to the inherent coupling problem in ranslational-rotational motion. This paper aims to develop a novel maneuver description
This paper presents PANTHER, a real-time perception-aware (PA) trajectory planner in dynamic environments. PANTHER plans trajectories that avoid dynamic obstacles while also keeping them in the sensor field of view (FOV) and minimizing the blur to ai
This paper focuses on the problem of learning 6-DOF grasping with a parallel jaw gripper in simulation. We propose the notion of a geometry-aware representation in grasping based on the assumption that knowledge of 3D geometry is at the heart of inte