ﻻ يوجد ملخص باللغة العربية
Following a question of K. Hori at K. Fukayas 60th birthday conference, we relate the recently established WDVV-type relations for real Gromov-Witten invariants to topological recursion relations in a real setting. We also describe precisely the connections between the relations themselves previously observed by A. Alcolado.
Ruan-Tian deformations of the Cauchy-Riemann operator enable a geometric definition of (standard) Gromov-Witten invariants of semi-positive symplectic manifolds in arbitrary genera. We describe an analogue of these deformations compatible with our re
Consider a Maslov zero Lagrangian submanifold diffeomorphic to a Lie group on which an anti-symplectic involution acts by the inverse map of the group. We show that the Fukaya $A_infty$ endomorphism algebra of such a Lagrangian is quasi-isomorphic to
Motivated by Nekrasovs instanton counting, we discuss a method for calculating equivariant volumes of non-compact quotients in symplectic and hyper-Kahler geometry by means of the Jeffrey-Kirwan residue-formula of non-abelian localization. In order t
We establish a system of PDE, called open WDVV, that constrains the bulk-deformed superpotential and associated open Gromov-Witten invariants of a Lagrangian submanifold $L subset X$ with a bounding chain. Simultaneously, we define the quantum cohomo
We use local Hamiltonian torus actions to degenerate a symplectic manifold to a normal crossings symplectic variety in a smooth one-parameter family. This construction, motivated in part by the Gross-Siebert and B. Parkers programs, contains a multif