ﻻ يوجد ملخص باللغة العربية
Contemporary monocular 6D pose estimation methods can only cope with a handful of object instances. This naturally hampers possible applications as, for instance, robots seamlessly integrated in everyday processes necessarily require the ability to work with hundreds of different objects. To tackle this problem of immanent practical relevance, we propose a novel method for class-level monocular 6D pose estimation, coupled with metric shape retrieval. Unfortunately, acquiring adequate annotations is very time-consuming and labor intensive. This is especially true for class-level 6D pose estimation, as one is required to create a highly detailed reconstruction for all objects and then annotate each object and scene using these models. To overcome this shortcoming, we additionally propose the idea of synthetic-to-real domain transfer for class-level 6D poses by means of self-supervised learning, which removes the burden of collecting numerous manual annotations. In essence, after training our proposed method fully supervised with synthetic data, we leverage recent advances in differentiable rendering to self-supervise the model with unannotated real RGB-D data to improve latter inference. We experimentally demonstrate that we can retrieve precise 6D poses and metric shapes from a single RGB image.
6D object pose estimation is a fundamental problem in computer vision. Convolutional Neural Networks (CNNs) have recently proven to be capable of predicting reliable 6D pose estimates even from monocular images. Nonetheless, CNNs are identified as be
Encouraged by the success of contrastive learning on image classification tasks, we propose a new self-supervised method for the structured regression task of 3D hand pose estimation. Contrastive learning makes use of unlabeled data for the purpose o
6D pose estimation of rigid objects from a single RGB image has seen tremendous improvements recently by using deep learning to combat complex real-world variations, but a majority of methods build models on the per-object level, failing to scale to
Accurate 3D human pose estimation from single images is possible with sophisticated deep-net architectures that have been trained on very large datasets. However, this still leaves open the problem of capturing motions for which no such database exis
We propose a method of Category-level 6D Object Pose and Size Estimation (COPSE) from a single depth image, without external pose-annotated real-world training data. While previous works exploit visual cues in RGB(D) images, our method makes inferenc