ﻻ يوجد ملخص باللغة العربية
Mixture Density Networks are a tried and tested tool for modelling conditional probability distributions. As such, they constitute a great baseline for novel approaches to this problem. In the standard formulation, an MDN takes some input and outputs parameters for a Gaussian mixture model with restrictions on the mixture components covariance. Since covariance between random variables is a central issue in the conditional modeling problems we were investigating, I derived and implemented an MDN formulation with unrestricted covariances. It is likely that this has been done before, but I could not find any resources online. For this reason, I have documented my approach in the form of this technical report, in hopes that it may be useful to others facing a similar situation.
We study the problem of learning a finite union of integer (axis-aligned) hypercubes over the d-dimensional integer lattice, i.e., whose edges are parallel to the coordinate axes. This is a natural generalization of the classic problem in the computa
Formal verification of neural networks is an active topic of research, and recent advances have significantly increased the size of the networks that verification tools can handle. However, most methods are designed for verification of an idealized m
By studying the family of $p$-dimensional scale mixtures, this paper shows for the first time a non trivial example where the eigenvalue distribution of the corresponding sample covariance matrix {em does not converge} to the celebrated Marv{c}enko-P
Neural networks offer a versatile, flexible and accurate approach to loss reserving. However, such applications have focused primarily on the (important) problem of fitting accurate central estimates of the outstanding claims. In practice, properties
We study the dependence of the spectral density of the covariance matrix ensemble on the power spectrum of the underlying multivariate signal. The white noise signal leads to the celebrated Marchenko-Pastur formula. We demonstrate results for some colored noise signals.