ﻻ يوجد ملخص باللغة العربية
In this paper we focus on understanding the physical processes that lead to stable or unstable ionization fronts (I-fronts) observed in simulations of moving black holes (BHs). The front instability may trigger bursts of gas accretion, rendering the BH significantly more luminous than at steady-state. We perform a series of idealized three dimensional radiation hydrodynamics simulations resolving the I-fronts around BHs of mass $M_mathrm{BH}$ and velocity $v_infty$ accreting from a medium of density $n_mathrm{H}$. The I-front, with radius $R_mathrm{I}$, transitions from D-type to R-type as the BH velocity becomes larger than a critical value $v_mathrm{R}sim 40,mathrm{km/s}$. The D-type front is preceded by a bow-shock of thickness $Delta R_mathrm{I}$ that decreases as $v_infty$ approaches $v_mathrm{R}$. We find that both D-type and R-type fronts can be unstable given the following two conditions: i) for D-type fronts the shell thickness must be $Delta R_mathrm{I}/R_mathrm{I}<0.05$ (i.e., $v_infty gtrsim 20,mathrm{km/s}$.), while no similar restriction holds for R-type fronts; ii) the temperature jump across the I-front must be $T_mathrm{II}/T_mathrm{I}>3$. This second condition is satisfied if $T_mathrm{I}<5000,mathrm{K}$ or if $n_mathrm{H},M_mathrm{BH} gtrsim 10^6,M_odot,mathrm{cm^{-3}}$. Due to X-ray pre-heating typically $T_mathrm{I} sim 10^4,mathrm{K}$, unless the D-type shell is optically thick to X-rays, which also happens when $n_mathrm{H},M_mathrm{BH}$ is greater than a metallicity-dependent critical value. We thus conclude that I-fronts around BHs are unstable only for relatively massive BHs moving trough very dense molecular clouds. We briefly discuss the observational consequences of the X-ray luminosity bursts likely associated with this instability.
An ionization front (IF) surrounding an H II region is a sharp interface where a cold neutral gas makes transition to a warm ionized phase by absorbing UV photons from central stars. We investigate the instability of a plane-parallel D-type IF thread
Stellar evolution theory predicts a gap in the black hole birth function caused by the pair instability. Presupernova stars that have a core mass below some limiting value, Mlo, after all pulsational activity is finished, collapse to black holes, whe
In this paper, we explore the mechanisms that regulate the formation and evolution of stellar black hole binaries (BHBs) around supermassive black holes (SMBHs). We show that dynamical interactions can efficiently drive in-situ BHB formation if the S
We investigate the development of the magnetic Rayleigh-Taylor instability at the inner edge of an astrophysical disk around a spinning central black hole. We solve the equations of general relativity that govern small amplitude oscillations of a dis
Through detection by low gravitational wave space interferometers, the capture of stars by supermassive black holes will constitute a giant step forward in the understanding of gravitation in strong field. The impact of the perturbations on the motio