ﻻ يوجد ملخص باللغة العربية
An integral part of video analysis and surveillance is temporal activity detection, which means to simultaneously recognize and localize activities in long untrimmed videos. Currently, the most effective methods of temporal activity detection are based on deep learning, and they typically perform very well with large scale annotated videos for training. However, these methods are limited in real applications due to the unavailable videos about certain activity classes and the time-consuming data annotation. To solve this challenging problem, we propose a novel task setting called zero-shot temporal activity detection (ZSTAD), where activities that have never been seen in training can still be detected. We design an end-to-end deep network based on R-C3D as the architecture for this solution. The proposed network is optimized with an innovative loss function that considers the embeddings of activity labels and their super-classes while learning the common semantics of seen and unseen activities. Experiments on both the THUMOS14 and the Charades datasets show promising performance in terms of detecting unseen activities.
Many activities of interest are rare events, with only a few labeled examples available. Therefore models for temporal activity detection which are able to learn from a few examples are desirable. In this paper, we present a conceptually simple and g
In a regular open set detection problem, samples of known classes (also called closed set classes) are used to train a special classifier. In testing, the classifier can (1) classify the test samples of known classes to their respective classes and (
Zero-shot detection (ZSD) is crucial to large-scale object detection with the aim of simultaneously localizing and recognizing unseen objects. There remain several challenges for ZSD, including reducing the ambiguity between background and unseen obj
Many interesting events in the real world are rare making preannotated machine learning ready videos a rarity in consequence. Thus, temporal activity detection models that are able to learn from a few examples are desirable. In this paper, we present
With the development of presentation attacks, Automated Fingerprint Recognition Systems(AFRSs) are vulnerable to presentation attack. Thus, numerous methods of presentation attack detection(PAD) have been proposed to ensure the normal utilization of