ترغب بنشر مسار تعليمي؟ اضغط هنا

Properties of gamma-ray decay lines in 3D core-collapse supernova models, with application to SN 1987A and Cas A

71   0   0.0 ( 0 )
 نشر من قبل Anders Jerkstrand
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Comparison of theoretical line profiles to observations provides important tests for supernova explosion models. We study the shapes of radioactive decay lines predicted by current 3D core-collapse explosion simulations, and compare these to observations of SN 1987A and Cas A. Both the widths and shifts of decay lines vary by several thousand kilometers per second depending on viewing angle. The line profiles can be complex with multiple peaks. By combining observational constraints from 56Co decay lines, 44Ti decay lines, and Fe IR lines, we delineate a picture of the morphology of the explosive burning ashes in SN 1987A. For M_ZAMS=15-20 Msun progenitors exploding with ~1.5 *10^51 erg, ejecta structures suitable to reproduce the observations involve a bulk asymmetry of the 56Ni of at least ~400 km/s and a bulk velocity of at least ~1500 km/s. By adding constraints to reproduce the UVOIR bolometric light curve of SN 1987A up to 600d, an ejecta mass around 14 Msun is favoured. We also investigate whether observed decay lines can constrain the neutron star (NS) kick velocity. The model grid provides a constraint V_NS > V_redshift, and applying this to SN 1987A gives a NS kick of at least 500 km/s. For Cas A, our single model provides a satisfactory fit to the NuSTAR observations and reinforces the result that current neutrino-driven core-collapse SN models can achieve enough bulk asymmetry in the explosive burning material. Finally, we investigate the internal gamma-ray field and energy deposition, and compare the 3D models to 1D approximations.



قيم البحث

اقرأ أيضاً

223 - H.-Thomas Janka , 2017
Fostered by the possibilities of multi-dimensional computational modeling, in particular the advent of three-dimensional (3D) simulations, our understanding of the neutrino-driven explosion mechanism of core-collapse supernovae (SNe) has experienced remarkable progress over the past decade. First self-consistent, first-principle models have shown successful explosions in 3D, and even failed cases may be cured by moderate changes of the microphysics inside the neutron star (NS), better grid resolution, or more detailed progenitor conditions at the onset of core collapse, in particular large-scale perturbations in the convective Si and O burning shells. 3D simulations have also achieved to follow neutrino-driven explosions continuously from the initiation of the blast wave, through the shock breakout from the progenitor surface, into the radioactively powered evolution of the SN, and towards the free expansion phase of the emerging remnant. Here we present results from such simulations, which form the basis for direct comparisons with observations of SNe and SN remnants in order to derive constraints on the still disputed explosion mechanism. It is shown that predictions based on hydrodynamic instabilities and mixing processes associated with neutrino-driven explosions yield good agreement with measured NS kicks, light-curve properties of SN 1987A, and asymmetries of iron and 44Ti distributions observed in SN 1987A and Cassiopeia A.
During the first few hundred days after the explosion, core-collapse supernovae (SNe) emit down-scattered X-rays and gamma-rays originating from radioactive line emissions, primarily from the $^{56}$Ni $rightarrow$ $^{56}$Co $rightarrow$ $^{56}$Fe ch ain. We use SN models based on three-dimensional neutrino-driven explosion simulations of single stars and mergers to compute this emission and compare the predictions with observations of SN 1987A. A number of models are clearly excluded, showing that high-energy emission is a powerful way of discriminating between models. The best models are almost consistent with the observations, but differences that cannot be matched by a suitable choice of viewing angle are evident. Therefore, our self-consistent models suggest that neutrino-driven explosions are able to produce, in principle, sufficient mixing, although remaining discrepancies may require small changes to the progenitor structures. The soft X-ray cutoff is primarily determined by the metallicity of the progenitor envelope. The main effect of asymmetries is to vary the flux level by a factor of ${sim}$3. For the more asymmetric models, the shapes of the light curves also change. In addition to the models of SN 1987A, we investigate two models of Type II-P SNe and one model of a stripped-envelope Type IIb SN. The Type II-P models have similar observables as the models of SN 1987A, but the stripped-envelope SN model is significantly more luminous and evolves faster. Finally, we make simple predictions for future observations of nearby SNe.
The recent discovery that the Fe-K line luminosities and energy centroids observed in nearby SNRs are a strong discriminant of both progenitor type and circumstellar environment has implications for our understanding of supernova progenitor evolution . Using models for the chemical composition of core-collapse supernova ejecta, we model the dynamics and thermal X-ray emission from shocked ejecta and circumstellar material, modeled as an $r^{-2}$ wind, to ages of 3000 years. We compare the X-ray spectra expected from these models to observations made with the Suzaku satellite. We also model the dynamics and X-ray emission from Type Ia progenitor models. We find a clear distinction in Fe-K line energy centroid between core-collapse and Type Ia models. The core-collapse supernova models predict higher Fe-K line centroid energies than the Type Ia models, in agreement with observations. We argue that the higher line centroids are a consequence of the increased densities found in the circumstellar environment created by the expansion of the slow-moving wind from the massive progenitors.
The structure and morphology of supernova remnants (SNRs) reflect the properties of the parent supernovae (SNe) and the characteristics of the inhomogeneous environments through which the remnants expand. Linking the morphology of SNRs to anisotropie s developed in their parent SNe can be essential to obtain key information on many aspects of the explosion processes associated with SNe. Nowadays, our capability to study the SN-SNR connection has been largely improved thanks to multi-dimensional models describing the long-term evolution from the SN to the SNR as well as to observational data of growing quality and quantity across the electromagnetic spectrum which allow to constrain the models. Here we used the numerical resources obtained in the framework of the Accordo Quadro INAF-CINECA (2017) together with a CINECA ISCRA Award N.HP10BARP6Y to describe the full evolution of a SNR from the core-collapse to the full-fledged SNR at the age of 2000 years. Our simulations were compared with observations of SNR Cassiopeia A (Cas A) at the age of $sim 350$~years. Thanks to these simulations we were able to link the physical, chemical and morphological properties of a SNR to the physical processes governing the complex phases of the SN explosion.
We perform three-dimensional hydrodynamic simulations of aspherical core-collapse supernovae focusing on the matter mixing in SN 1987A. The impacts of four progenitor (pre-supernova) models and parameterized aspherical explosions are investigated. Th e four pre-supernova models include a blue supergiant (BSG) model based on a slow merger scenario developed recently for the progenitor of SN 1987A (Urushibata et al. 2018). The others are a BSG model based on a single star evolution and two red supergiant (RSG) models. Among the investigated explosion (simulation) models, a model with the binary merger progenitor model and with an asymmetric bipolar-like explosion, which invokes a jetlike explosion, best reproduces constraints on the mass of high velocity $^{56}$Ni, as inferred from the observed [Fe II] line profiles. The advantage of the binary merger progenitor model for the matter mixing is the flat and less extended $rho ,r^3$ profile of the C+O core and the helium layer, which may be characterized by the small helium core mass. From the best explosion model, the direction of the bipolar explosion axis (the strongest explosion direction), the neutron star (NS) kick velocity, and its direction are predicted. Other related implications and future prospects are also given.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا