ﻻ يوجد ملخص باللغة العربية
The occurrence of superconducting and insulating phases is well-established in twisted graphene bilayers, and they have also been reported in other arrangements of graphene layers. We investigate three such arrangements: untwisted AB bilayer graphene on an hBN substrate, two graphene bilayers twisted with respect to each other, and a single ABC stacked graphene trilayer on an hBN substrate. Narrow bands with different topology occur in all cases, producing a high density of states which enhances the role of interactions. We investigate the effect of the long range Coulomb interaction, treated within the self consistent Hartree-Fock approximation. We find that the on-site part of the Fock potential strongly modifies the band structure at charge neutrality. The Hartree part does not significantly modify the shape and width of the bands in the three cases considered here, in contrast to the effect that such a potential has in twisted bilayer graphene.
Recently twisted bilayer graphene (t-BLG) emerges as a new strongly correlated physical platform near a magic twist angle, which hosts many exciting phenomena such as the Mott-like insulating phases, unconventional superconducting behavior and emerge
We calculate the interactions between the Wannier functions of the 8-orbital model for twisted bilayer graphene (TBG). In this model, two orbitals per valley centered at the AA regions, the AA-p orbitals, account for the most part of the spectral wei
Twisted bilayer graphene exhibits a panoply of many-body phenomena that are intimately tied to the appearance of narrow and well isolated electronic bands near magic-angle. The microscopic ingredients that are responsible for the complex experimental
A real-space formulation is given for the recently discussed exciton condensate in a symmetrically biased graphene bilayer. We show that in the continuum limit an oddly-quantized vortex in this condensate binds exactly one zero mode per valley index
We introduce and analyze a model that sheds light on the interplay between correlated insulating states, superconductivity, and flavor-symmetry breaking in magic angle twisted bilayer graphene. Using a variational mean-field theory, we determine the