ﻻ يوجد ملخص باللغة العربية
Intelligent vision is appealing in computer-assisted and robotic surgeries. Vision-based analysis with deep learning usually requires large labeled datasets, but manual data labeling is expensive and time-consuming in medical problems. We investigate a novel cross-domain strategy to reduce the need for manual data labeling by proposing an image-to-image translation model live-cadaver GAN (LC-GAN) based on generative adversarial networks (GANs). We consider a situation when a labeled cadaveric surgery dataset is available while the task is instrument segmentation on an unlabeled live surgery dataset. We train LC-GAN to learn the mappings between the cadaveric and live images. For live image segmentation, we first translate the live images to fake-cadaveric images with LC-GAN and then perform segmentation on the fake-cadaveric images with models trained on the real cadaveric dataset. The proposed method fully makes use of the labeled cadaveric dataset for live image segmentation without the need to label the live dataset. LC-GAN has two generators with different architectures that leverage the deep feature representation learned from the cadaveric image based segmentation task. Moreover, we propose the structural similarity loss and segmentation consistency loss to improve the semantic consistency during translation. Our model achieves better image-to-image translation and leads to improved segmentation performance in the proposed cross-domain segmentation task.
High-resolution magnetic resonance images can provide fine-grained anatomical information, but acquiring such data requires a long scanning time. In this paper, a framework called the Fused Attentive Generative Adversarial Networks(FA-GAN) is propose
In this work, we aim to learn an unpaired image enhancement model, which can enrich low-quality images with the characteristics of high-quality images provided by users. We propose a quality attention generative adversarial network (QAGAN) trained on
Despite significant advances in image-to-image (I2I) translation with Generative Adversarial Networks (GANs) have been made, it remains challenging to effectively translate an image to a set of diverse images in multiple target domains using a pair o
Among the major remaining challenges for single image super resolution (SISR) is the capacity to recover coherent images with global shapes and local details conforming to human vision system. Recent generative adversarial network (GAN) based SISR me
Brain age estimation based on magnetic resonance imaging (MRI) is an active research area in early diagnosis of some neurodegenerative diseases (e.g. Alzheimer, Parkinson, Huntington, etc.) for elderly people or brain underdevelopment for the young g